Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Drug Resist ; 17: 3011-3023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050833

RESUMO

Purpose: Colistin is classified by the World Health Organization (WHO) as a critically important and last-resort antibiotic for the treatment of infections caused by carbapenem-resistant bacteria. However, colistin resistance mediated by chromosomal mutations or plasmid-linked mobilized colistin resistance (mcr) genes has emerged. Methods: Thirteen mcr-positive Aeromonas species isolated from water samples collected in Eastern Ghana were analyzed using whole-genome sequencing (WGS). Antimicrobial susceptibility was tested using the broth microdilution method. Resistome analysis was performed in silico using a web-based platform. Results: The minimum inhibitory concentration (MIC) of colistin for all except three isolates was >4 µg/mL. Nine new sequence types were identified and whole-genome analysis revealed that the isolates harbored genes (mcr-3-related genes) that code for Lipid A phosphoethanolamine transferases on their chromosomes. BLAST analysis indicated that the amino acid sequences of the mcr-3-related genes detected varied from those previously reported and shared 79.04-99.86% nucleotide sequence identity with publicly available mcr-3 variants and mcr-3-related phosphoethanolamine transferases. Analysis of the genetic context of mcr-3-related genes revealed that the genetic environment surrounding mcr-3-related genes was diverse among the different species of Aeromonas but conserved among isolates of the same species. Mcr-3-related-gene-IS-mcr-3-related-gene segment was identified in three Aeromonas caviae strains. Conclusion: The presence of mcr-3-related genes close to insertion elements is important for continuous monitoring to better understand how to control the mobilization and dissemination of antibiotic resistance genes.

2.
J Microbiol Methods ; 221: 106929, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599390

RESUMO

Utility of a recently developed long-read pipeline, Emu, was assessed using an expectation-maximization algorithm for accurate read classification. We compared it to conventional short- and long-read pipelines, using well-characterized mock bacterial samples. Our findings highlight the necessity of appropriate data-processing for taxonomic descriptions, expanding our understanding of the precise microbiome.


Assuntos
Bactérias , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Microbiota/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Nanoporos , DNA Bacteriano/genética
3.
Acta Biomater ; 177: 107-117, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382830

RESUMO

Designing proteins that fold and assemble over different length scales provides a way to tailor the mechanical properties and biological performance of hydrogels. In this study, we designed modular proteins that self-assemble into fibrillar networks and, as a result, form hydrogel materials with novel properties. We incorporated distinct functionalities by connecting separate self-assembling (A block) and cell-binding (B block) domains into single macromolecules. The number of self-assembling domains affects the rigidity of the fibers and the final storage modulus G' of the materials. The mechanical properties of the hydrogels could be tuned over a broad range (G' = 0.1 - 10 kPa), making them suitable for the cultivation and differentiation of multiple cell types, including cortical neurons and human mesenchymal stem cells. Moreover, we confirmed the bioavailability of cell attachment domains in the hydrogels that can be further tailored for specific cell types or other biological applications. Finally, we demonstrate the versatility of the designed proteins for application in biofabrication as 3D scaffolds that support cell growth and guide their function. STATEMENT OF SIGNIFICANCE: Designed proteins that enable the decoupling of biophysical and biochemical properties within the final material could enable modular biomaterial engineering. In this context, we present a designed modular protein platform that integrates self-assembling domains (A blocks) and cell-binding domains (B blocks) within a single biopolymer. The linking of assembly domains and cell-binding domains this way provided independent tuning of mechanical properties and inclusion of biofunctional domains. We demonstrate the use of this platform for biofabrication, including neural cell culture and 3D printing of scaffolds for mesenchymal stem cell culture and differentiation. Overall, this work highlights how informed design of biopolymer sequences can enable the modular design of protein-based hydrogels with independently tunable biophysical and biochemical properties.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/química , Proteínas/química , Materiais Biocompatíveis/metabolismo , Biopolímeros , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA