Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(32): e2206000119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914132

RESUMO

Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.


Assuntos
Implantação do Embrião , Sistema de Sinalização das MAP Quinases , Proteína Quinase 14 Ativada por Mitógeno , Progesterona , Útero , Animais , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Feminino , Infertilidade Feminina , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fosforilação , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Útero/enzimologia , Útero/metabolismo
2.
Nat Immunol ; 13(2): 152-61, 2012 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-22231518

RESUMO

Dendritic cells (DCs) bridge innate and adaptive immunity, but how DC-derived signals regulate T cell lineage choices remains unclear. We report here that the mitogen-activated protein kinase p38α programmed DCs to drive the differentiation of the T(H)17 subset of helper T cells. Deletion of p38α in DCs protected mice from T(H)17 cell-mediated autoimmune neuroinflammation, but deletion of p38α in macrophages or T cells did not. We also found that p38α orchestrated the expression of cytokines and costimulatory molecules in DCs and further 'imprinted' signaling via the receptor for interleukin 23 (IL-23R) in responding T cells to promote T(H)17 differentiation. Moreover, p38α was required for tissue-infiltrating DCs to sustain T(H)17 responses. This activity of p38α was conserved in mouse and human DCs and was dynamically regulated by pattern recognition and fungal infection. Our results identify p38α signaling as a central pathway for the integration of instructive signals in DCs for T(H)17 differentiation and inflammation.


Assuntos
Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Ativação Linfocitária/imunologia , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Células Th17/imunologia , Animais , Citocinas/imunologia , Células Dendríticas/enzimologia , Encefalomielite Autoimune Experimental/enzimologia , Deleção de Genes , Humanos , Macrófagos/enzimologia , Macrófagos/imunologia , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/genética , Micoses/imunologia , Micoses/metabolismo , Receptores de Interleucina/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Linfócitos T/enzimologia , Linfócitos T/imunologia , Células Th17/enzimologia
3.
Circ Res ; 130(2): 234-248, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34875852

RESUMO

BACKGROUND: During the development of heart failure, a fetal cardiac gene program is reactivated and accelerates pathological cardiac remodeling. We previously reported that a transcriptional repressor, NRSF (neuron restrictive silencer factor), suppresses the fetal cardiac gene program, thereby maintaining cardiac integrity. The underlying molecular mechanisms remain to be determined, however. METHODS: We aim to elucidate molecular mechanisms by which NRSF maintains normal cardiac function. We generated cardiac-specific NRSF knockout mice and analyzed cardiac gene expression profiles in those mice and mice cardiac-specifically expressing a dominant-negative NRSF mutant. RESULTS: We found that cardiac expression of Gαo, an inhibitory G protein encoded in humans by GNAO1, is transcriptionally regulated by NRSF and is increased in the ventricles of several mouse models of heart failure. Genetic knockdown of Gnao1 ameliorated the cardiac dysfunction and prolonged survival rates in these mouse heart failure models. Conversely, cardiac-specific overexpression of GNAO1 in mice was sufficient to induce cardiac dysfunction. Mechanistically, we observed that increasing Gαo expression increased surface sarcolemmal L-type Ca2+ channel activity, activated CaMKII (calcium/calmodulin-dependent kinase-II) signaling, and impaired Ca2+ handling in ventricular myocytes, which led to cardiac dysfunction. CONCLUSIONS: These findings shed light on a novel function of Gαo in the regulation of cardiac Ca2+ homeostasis and systolic function and suggest Gαo may be an effective therapeutic target for the treatment of heart failure.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Repressoras/genética
4.
Arterioscler Thromb Vasc Biol ; 43(2): e66-e82, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36519468

RESUMO

BACKGROUND: Although hypercholesterolemia reportedly counteracts lymphocyte trafficking across lymphatic vessels, the roles of lymphatic endothelial cells (LECs) in the lymphocyte regulations remain unclear. Previous studies showed that calpain-an intracellular modulatory protease-interferes with leukocyte dynamics in the blood microcirculation and is associated with hypercholesterolemic dysfunction in vascular endothelial cells. METHODS: This study investigated whether the calpain systems in LECs associate with the LEC-lymphocyte interaction under hypercholesterolemia using gene-targeted mice. RESULTS: Lipidomic analysis in hypercholesterolemic mice showed that several lysophospholipids, including lysophosphatidic acid, accumulated in the lymphatic environment. Lysophosphatidic acid enables the potentiation of calpain systems in cultured LECs, which limits their ability to stabilize regulatory T cells (Treg) without altering Th1/Th2 (T helper type1/2) subsets. This occurs via the proteolytic degradation of MEKK1 (mitogen-activated protein kinase kinase kinase 1) and the subsequent inhibition of TGF (transforming growth factor)-ß1 production in LECs. Targeting calpain systems in LECs expanded Tregs in the blood circulation and reduced aortic atherosclerosis in hypercholesterolemic mice, concomitant with the reduction of proinflammatory macrophages in the lesions. Treg expansion in the blood circulation and atheroprotection in calpain-targeted mice was prevented by the administration of TGF-ß type-I receptor inhibitor. Moreover, lysophosphatidic acid-induced calpain overactivation potentiated the IL (interleukin)-18/NF-κB (nuclear factor κB)/VCAM1 (vascular cell adhesion molecule 1) axis in LECs, thereby inhibiting lymphocyte mobility on the cells. Indeed, VCAM1 in LECs was upregulated in hypercholesterolemic mice and human cases of coronary artery disease. Neutralization of VCAM1 or targeting LEC calpain systems recovered afferent Treg transportation via lymphatic vessels in mice. CONCLUSIONS: Calpain systems in LECs have a key role in controlling Treg stability and trafficking under hypercholesterolemia.


Assuntos
Hipercolesterolemia , Vasos Linfáticos , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Linfócitos T Reguladores/metabolismo , Calpaína/metabolismo , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Vasos Linfáticos/metabolismo , NF-kappa B/metabolismo
5.
J Mol Cell Cardiol ; 180: 58-68, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172930

RESUMO

Sepsis is a life-threatening syndrome, and its associated mortality is increased when cardiac dysfunction and damage (septic cardiomyopathy [SCM]) occur. Although inflammation is involved in the pathophysiology of SCM, the mechanism of how inflammation induces SCM in vivo has remained obscure. NLRP3 inflammasome is a critical component of the innate immune system that activates caspase-1 (Casp1) and causes the maturation of IL-1ß and IL-18 as well as the processing of gasdermin D (GSDMD). Here, we investigated the role of the NLRP3 inflammasome in a murine model of lipopolysaccharide (LPS)-induced SCM. LPS injection induced cardiac dysfunction, damage, and lethality, which was significantly prevented in NLRP3-/- mice, compared to wild-type (WT) mice. LPS injection upregulated mRNA levels of inflammatory cytokines (Il6, Tnfa, and Ifng) in the heart, liver, and spleen of WT mice, and this upregulation was prevented in NLRP3-/- mice. LPS injection increased plasma levels of inflammatory cytokines (IL-1ß, IL-18, and TNF-α) in WT mice, and this increase was markedly inhibited in NLRP3-/- mice. LPS-induced SCM was also prevented in Casp1/11-/- mice, but not in Casp11mt, IL-1ß-/-, IL-1α-/-, or GSDMD-/- mice. Notably, LPS-induced SCM was apparently prevented in IL-1ß-/- mice transduced with adeno-associated virus vector expressing IL-18 binding protein (IL-18BP). Furthermore, splenectomy, irradiation, or macrophage depletion alleviated LPS-induced SCM. Our findings demonstrate that the cross-regulation of NLRP3 inflammasome-driven IL-1ß and IL-18 contributes to the pathophysiology of SCM and provide new insights into the mechanism underlying the pathogenesis of SCM.


Assuntos
Cardiomiopatias , Inflamassomos , Interleucina-18 , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Cardiomiopatias/genética , Caspase 1/genética , Caspase 1/metabolismo , Citocinas , Inflamassomos/metabolismo , Inflamação , Interleucina-18/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
6.
J Biol Chem ; 298(6): 101953, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447117

RESUMO

Free amino acids that accumulate in the plasma of patients with diabetes and obesity influence lipid metabolism and protein synthesis in the liver. The stress-inducible intracellular protease calpain proteolyzes various substrates in vascular endothelial cells (ECs), although its contribution to the supply of free amino acids in the liver microenvironment remains enigmatic. In the present study, we showed that calpains are associated with free amino acid production in cultured ECs. Furthermore, conditioned media derived from calpain-activated ECs facilitated the phosphorylation of ribosomal protein S6 kinase (S6K) and de novo lipogenesis in hepatocytes, which were abolished by the amino acid transporter inhibitor, JPH203, and the mammalian target of rapamycin complex 1 inhibitor, rapamycin. Meanwhile, calpain-overexpressing capillary-like ECs were observed in the livers of high-fat diet-fed mice. Conditional KO of EC/hematopoietic Capns1, which encodes a calpain regulatory subunit, diminished levels of branched-chain amino acids in the hepatic microenvironment without altering plasma amino acid levels. Concomitantly, conditional KO of Capns1 mitigated hepatic steatosis without normalizing body weight and the plasma lipoprotein profile in an amino acid transporter-dependent manner. Mice with targeted Capns1 KO exhibited reduced phosphorylation of S6K and maturation of lipogenic factor sterol regulatory element-binding protein 1 in hepatocytes. Finally, we show that bone marrow transplantation negated the contribution of hematopoietic calpain systems. We conclude that overactivation of calpain systems may be responsible for the production of free amino acids in ECs, which may be sufficient to potentiate S6K/sterol regulatory element-binding protein 1-induced lipogenesis in surrounding hepatocytes.


Assuntos
Calpaína , Fígado Gorduroso , Aminoácidos/metabolismo , Animais , Calpaína/genética , Calpaína/metabolismo , Células Endoteliais/metabolismo , Fígado Gorduroso/metabolismo , Humanos , Lipogênese , Fígado/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
7.
J Biol Chem ; 296: 100563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33745970

RESUMO

Hematopoietic stem cells (HSCs) and their progeny sustain lifetime hematopoiesis. Aging alters HSC function, number, and composition and increases risk of hematological malignancies, but how these changes occur in HSCs remains unclear. Signaling via p38 mitogen-activated kinase (p38MAPK) has been proposed as a candidate mechanism underlying induction of HSC aging. Here, using genetic models of both chronological and premature aging, we describe a multimodal role for p38α, the major p38MAPK isozyme in hematopoiesis, in HSC aging. We report that p38α regulates differentiation bias and sustains transplantation capacity of HSCs in the early phase of chronological aging. However, p38α decreased HSC transplantation capacity in the late progression phase of chronological aging. Furthermore, codeletion of p38α in mice deficient in ataxia-telangiectasia mutated, a model of premature aging, exacerbated aging-related HSC phenotypes seen in ataxia-telangiectasia mutated single-mutant mice. Overall, these studies provide new insight into multiple functions of p38MAPK, which both promotes and suppresses HSC aging context dependently.


Assuntos
Envelhecimento/patologia , Diferenciação Celular , Senescência Celular , Células-Tronco Hematopoéticas/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/fisiologia , Envelhecimento/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Proliferação de Células , Feminino , Hematopoese , Células-Tronco Hematopoéticas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
8.
Circulation ; 141(8): 667-677, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31931613

RESUMO

BACKGROUND: Proinflammatory cytokines play an important role in the pathogenesis of heart failure. The mechanisms responsible for maintaining sterile inflammation within failing hearts remain poorly defined. Although transcriptional control is important for proinflammatory cytokine gene expression, the stability of mRNA also contributes to the kinetics of immune responses. Regnase-1 is an RNase involved in the degradation of a set of proinflammatory cytokine mRNAs in immune cells. The role of Regnase-1 in nonimmune cells such as cardiomyocytes remains to be elucidated. METHODS: To examine the role of proinflammatory cytokine degradation by Regnase-1 in cardiomyocytes, cardiomyocyte-specific Regnase-1-deficient mice were generated. The mice were subjected to pressure overload by means of transverse aortic constriction to induce heart failure. Cardiac remodeling was assessed by echocardiography as well as histological and molecular analyses 4 weeks after operation. Inflammatory cell infiltration was examined by immunostaining. Interleukin-6 signaling was inhibited by administration with its receptor antibody. Overexpression of Regnase-1 in the heart was performed by adeno-associated viral vector-mediated gene transfer. RESULTS: Cardiomyocyte-specific Regnase-1-deficient mice showed no cardiac phenotypes under baseline conditions, but exhibited severe inflammation and dilated cardiomyopathy after 4 weeks of pressure overload compared with control littermates. Four weeks after transverse aortic constriction, the Il6 mRNA level was upregulated, but not other cytokine mRNAs, including tumor necrosis factor-α, in Regnase-1-deficient hearts. Although the Il6 mRNA level increased 1 week after operation in both Regnase-1-deficient and control hearts, it showed no increase in control hearts 4 weeks after operation. Administration of anti-interleukin-6 receptor antibody attenuated the development of inflammation and cardiomyopathy in cardiomyocyte-specific Regnase-1-deficient mice. In severe pressure overloaded wild-type mouse hearts, sustained induction of Il6 mRNA was observed, even though the protein level of Regnase-1 increased. Adeno-associated virus 9-mediated cardiomyocyte-targeted gene delivery of Regnase-1 or administration of anti-interleukin-6 receptor antibody attenuated the development of cardiomyopathy induced by severe pressure overload in wild-type mice. CONCLUSIONS: The degradation of cytokine mRNA by Regnase-1 in cardiomyocytes plays an important role in restraining sterile inflammation in failing hearts and the Regnase-1-mediated pathway might be a therapeutic target to treat patients with heart failure.


Assuntos
Inflamação/patologia , Interleucina-6/metabolismo , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Ribonucleases/genética , Animais , Anticorpos/imunologia , Anticorpos/uso terapêutico , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Vetores Genéticos/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/prevenção & controle , Inflamação/prevenção & controle , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-6/imunologia , Ribonucleases/deficiência , Ribonucleases/metabolismo , Regulação para Cima
9.
Proc Natl Acad Sci U S A ; 115(52): E12313-E12322, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30541887

RESUMO

Dendritic cells (DCs) play pivotal roles in maintaining intestinal homeostasis, but how the DCs regulate diverse immune networks on homeostasis breakdown remains largely unknown. Here, we report that, in response to epithelial barrier disruption, colonic DCs regulate the differentiation of type 1 regulatory T (Tr1) cells through p38α-dependent IL-27 production to initiate an effective immune response. Deletion of p38α in DCs, but not in T cells, led to increased Tr1 and protected mice from dextran sodium sulfate-induced acute colitis and chronic colitis-associated colorectal cancer. We show that higher levels of IL-27 in p38α-deficient colonic cDC1s, but not cDC2s, were responsible for the increase of Tr1 cells. Moreover, p38α-dependent IL-27 enhanced IL-22 secretion from intestinal group 3 innate lymphoid cells and protected epithelial barrier function. In p38α-deficient DCs, the TAK1-MKK4/7-JNK-c-Jun axis was hyperactivated, leading to high IL-27 levels, and inhibition of the JNK-c-Jun axis suppressed IL-27 expression. ChIP assay revealed direct binding of c-Jun to the promoter of Il27p28, which was further enhanced in p38α-deficient DCs. In summary, here we identify a key role for p38α signaling in DCs in regulating intestinal inflammatory response and tumorigenesis, and our finding may provide targets for the treatment of inflammatory intestinal diseases.


Assuntos
Colite/enzimologia , Colo/imunologia , Neoplasias Colorretais/enzimologia , Células Dendríticas/enzimologia , Proteína Quinase 14 Ativada por Mitógeno/imunologia , Animais , Carcinogênese , Colite/genética , Colite/imunologia , Colite/patologia , Colo/enzimologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Células Dendríticas/imunologia , Feminino , Humanos , Interleucina-27/genética , Interleucina-27/imunologia , Intestinos/imunologia , Intestinos/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 14 Ativada por Mitógeno/genética , Linfócitos T Reguladores/imunologia
10.
Nat Immunol ; 9(9): 1019-27, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18677317

RESUMO

The mitogen-activated protein kinase p38 mediates cellular responses to injurious stress and immune signaling. Among the many p38 isoforms, p38 alpha is the most widely expressed in adult tissues and can be targeted by various pharmacological inhibitors. Here we investigated how p38 alpha activation is linked to cell type-specific outputs in mouse models of cutaneous inflammation. We found that both myeloid and epithelial p38 elicit inflammatory responses, yet p38 alpha signaling in each cell type served distinct inflammatory functions and varied depending on the mode of skin irritation. In addition, myeloid p38 alpha limited acute inflammation via activation of anti-inflammatory gene expression dependent on mitogen- and stress-activated kinases. Our results suggest a dual function for p38 alpha in the regulation of inflammation and show mixed potential for its inhibition as a therapeutic strategy.


Assuntos
Mediadores da Inflamação/metabolismo , Inflamação/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Células Cultivadas/metabolismo , Modelos Animais de Doenças , Células Epiteliais , Expressão Gênica/efeitos dos fármacos , Camundongos , Células Mieloides , Inibidores de Proteínas Quinases/farmacologia , Dermatopatias/genética , Dermatopatias/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
11.
Biochem Biophys Res Commun ; 515(3): 442-447, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31160091

RESUMO

In myocardial ischemia/reperfusion injury, the innate immune and subsequent inflammatory responses play a crucial role in the extension of myocardial damage. Toll-like receptor 9 (TLR9) is a critical receptor for recognizing unmethylated CpG motifs that mitochondria contain in their DNA, and induces inflammatory responses. The aim of this study was to elucidate the role of TLR9 in myocardial ischemia/reperfusion injury. Isolated hearts from TLR9-deficient and control wild-type mice were subjected to 35 min of global ischemia, followed by 60 min of reperfusion with Langendorff apparatus. Furthermore, wild-type mouse hearts were infused with DNase I and subjected to ischemia/reperfusion. Ablation of TLR9-mediated signaling pathway attenuates myocardial ischemia/reperfusion injury and inflammatory responses, and digestion of extracellular mitochondrial DNA released from the infarct heart partially improved myocardial ischemia/reperfusion injury with no effect on inflammatory responses. TLR9 could be a therapeutic target to reduce myocardial ischemia/reperfusion injury.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Receptor Toll-Like 9/metabolismo , Animais , Citocinas/metabolismo , Desoxirribonuclease I/metabolismo , Regulação da Expressão Gênica , Testes de Função Cardíaca , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Necrose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Biochem J ; 475(5): 839-852, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511093

RESUMO

Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases.


Assuntos
Doenças Cardiovasculares/genética , DNA Mitocondrial/fisiologia , Mediadores da Inflamação/metabolismo , Inflamação/genética , Animais , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/metabolismo , Humanos , Inflamação/complicações
13.
J Mol Cell Cardiol ; 114: 93-104, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29129702

RESUMO

Protein quality control in cardiomyocytes is crucial to maintain cellular homeostasis. The accumulation of damaged organelles, such as mitochondria and misfolded proteins in the heart is associated with heart failure. During the process to identify novel mitochondria-specific autophagy (mitophagy) receptors, we found FK506-binding protein 8 (FKBP8), also known as FKBP38, shares similar structural characteristics with a yeast mitophagy receptor, autophagy-related 32 protein. However, knockdown of FKBP8 had no effect on mitophagy in HEK293 cells or H9c2 myocytes. Since the role of FKBP8 in the heart has not been fully elucidated, the aim of this study is to determine the functional role of FKBP8 in the heart. Cardiac-specific FKBP8-deficient (Fkbp8-/-) mice were generated. Fkbp8-/- mice showed no cardiac phenotypes under baseline conditions. The Fkbp8-/- and control wild type littermates (Fkbp8+/+) mice were subjected to pressure overload by means of transverse aortic constriction (TAC). Fkbp8-/- mice showed left ventricular dysfunction and chamber dilatation with lung congestion 1week after TAC. The number of apoptotic cardiomyocytes was dramatically elevated in TAC-operated Fkbp8-/- hearts, accompanied with an increase in protein levels of cleaved caspase-12 and endoplasmic reticulum (ER) stress markers. Caspase-12 inhibition resulted in the attenuation of hydrogen peroxide-induced apoptotic cell death in FKBP8 knockdown H9c2 myocytes. Immunocytological and immunoprecipitation analyses indicate that FKBP8 is localized to the ER and mitochondria in the isolated cardiomyocytes, interacting with heat shock protein 90. Furthermore, there was accumulation of misfolded protein aggregates in FKBP8 knockdown H9c2 myocytes and electron dense deposits in perinuclear region in TAC-operated Fkbp8-/- hearts. The data suggest that FKBP8 plays a protective role against hemodynamic stress in the heart mediated via inhibition of the accumulation of misfolded proteins and ER-associated apoptosis.


Assuntos
Apoptose , Cardiotônicos/metabolismo , Retículo Endoplasmático/metabolismo , Coração/fisiopatologia , Hemodinâmica , Estresse Fisiológico , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Aorta/patologia , Apoptose/efeitos dos fármacos , Caspase 12/metabolismo , Constrição Patológica , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Coração/efeitos dos fármacos , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Pressão , Ligação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais , Estresse Fisiológico/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Ligação a Tacrolimo/deficiência , Remodelação Ventricular/efeitos dos fármacos
14.
J Biol Chem ; 292(5): 1762-1772, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28011639

RESUMO

The evolutionarily conserved protein kinase p38 mediates innate resistance to environmental stress and microbial infection. Four p38 isoforms exist in mammals and may have been co-opted for new roles in adaptive immunity. Murine T cells deficient in p38α, the ubiquitously expressed p38 isoform, showed no readily apparent cell-autonomous defects while expressing elevated amounts of another isoform, p38ß. Mice with T cells simultaneously lacking p38α and p38ß displayed lymphoid atrophy and elevated Foxp3+ regulatory T cell frequencies. Double deficiency of p38α and p38ß in naïve CD4+ T cells resulted in an attenuation of MAPK-activated protein kinase (MK)-dependent mTOR signaling after T cell receptor engagement, and enhanced their differentiation into regulatory T cells under appropriate inducing conditions. Pharmacological inhibition of the p38-MK-mTOR signaling module produced similar effects, revealing potential for therapeutic applications.


Assuntos
Sistema de Sinalização das MAP Quinases/imunologia , Proteína Quinase 11 Ativada por Mitógeno/imunologia , Proteína Quinase 14 Ativada por Mitógeno/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/genética , Receptores de Antígenos de Linfócitos T/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia
15.
Circulation ; 136(6): 549-561, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28356446

RESUMO

BACKGROUND: In the heart, acute injury induces a fibrotic healing response that generates collagen-rich scarring that is at first protective but if inappropriately sustained can worsen heart disease. The fibrotic process is initiated by cytokines, neuroendocrine effectors, and mechanical strain that promote resident fibroblast differentiation into contractile and extracellular matrix-producing myofibroblasts. The mitogen-activated protein kinase p38α (Mapk14 gene) is known to influence the cardiac injury response, but its direct role in orchestrating programmed fibroblast differentiation and fibrosis in vivo is unknown. METHODS: A conditional Mapk14 allele was used to delete the p38α encoding gene specifically in cardiac fibroblasts or myofibroblasts with 2 different tamoxifen-inducible Cre recombinase-expressing gene-targeted mouse lines. Mice were subjected to ischemic injury or chronic neurohumoral stimulation and monitored for survival, cardiac function, and fibrotic remodeling. Antithetically, mice with fibroblast-specific transgenic overexpression of activated mitogen-activated protein kinase kinase 6, a direct inducer of p38, were generated to investigate whether this pathway can directly drive myofibroblast formation and the cardiac fibrotic response. RESULTS: In mice, loss of Mapk14 blocked cardiac fibroblast differentiation into myofibroblasts and ensuing fibrosis in response to ischemic injury or chronic neurohumoral stimulation. A similar inhibition of myofibroblast formation and healing was also observed in a dermal wounding model with deletion of Mapk14. Transgenic mice with fibroblast-specific activation of mitogen-activated protein kinase kinase 6-p38 developed interstitial and perivascular fibrosis in the heart, lung, and kidney as a result of enhanced myofibroblast numbers. Mechanistic experiments show that p38 transduces cytokine and mechanical signals into myofibroblast differentiation through the transcription factor serum response factor and the signaling effector calcineurin. CONCLUSIONS: These findings suggest that signals from diverse modes of injury converge on p38α mitogen-activated protein kinase within the fibroblast to program the fibrotic response and myofibroblast formation in vivo, suggesting a novel therapeutic approach with p38 inhibitors for future clinical application.


Assuntos
Fibroblastos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/genética , Actinas/metabolismo , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/citologia , Fibrose , Ventrículos do Coração/diagnóstico por imagem , Isquemia/etiologia , Isquemia/metabolismo , Isquemia/patologia , Rim/metabolismo , Rim/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/deficiência , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Transdução de Sinais
16.
Circ Res ; 118(10): 1577-92, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27174951

RESUMO

Aging-related cardiovascular diseases are a rapidly increasing problem worldwide. Cardiac aging demonstrates progressive decline of diastolic dysfunction of ventricle and increase in ventricular and arterial stiffness accompanied by increased fibrosis stimulated by angiotensin II and proinflammatory cytokines. Reactive oxygen species and multiple signaling pathways on cellular senescence play major roles in the process. Aging is also associated with an alteration in steady state of macromolecular dynamics including a dysfunction of protein synthesis and degradation. Currently, impaired macromolecular degradation is considered to be closely related to enhanced inflammation and be involved in the process and mechanism of cardiac aging. Herein, we review the role and mechanisms of the degradation system of intracellular macromolecules in the process and pathophysiology of cardiovascular aging.


Assuntos
Envelhecimento/metabolismo , Miocárdio/metabolismo , Proteólise , Envelhecimento/patologia , Animais , Autofagia , Vasos Coronários/crescimento & desenvolvimento , Vasos Coronários/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo
17.
Circ Res ; 118(12): 1960-91, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27126807

RESUMO

Cardiovascular disease is a major leading cause of morbidity and mortality in the United States and elsewhere. Alterations in mitochondrial function are increasingly being recognized as a contributing factor in myocardial infarction and in patients presenting with cardiomyopathy. Recent understanding of the complex interaction of the mitochondria in regulating metabolism and cell death can provide novel insight and therapeutic targets. The purpose of this statement is to better define the potential role of mitochondria in the genesis of cardiovascular disease such as ischemia and heart failure. To accomplish this, we will define the key mitochondrial processes that play a role in cardiovascular disease that are potential targets for novel therapeutic interventions. This is an exciting time in mitochondrial research. The past decade has provided novel insight into the role of mitochondria function and their importance in complex diseases. This statement will define the key roles that mitochondria play in cardiovascular physiology and disease and provide insight into how mitochondrial defects can contribute to cardiovascular disease; it will also discuss potential biomarkers of mitochondrial disease and suggest potential novel therapeutic approaches.


Assuntos
American Heart Association , Cardiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Animais , Apoptose , Metabolismo Energético , Estresse Oxidativo , Estados Unidos
18.
Arterioscler Thromb Vasc Biol ; 37(12): e185-e196, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28982666

RESUMO

OBJECTIVE: MAPKs (mitogen-activated protein kinases), especially p38, play detrimental roles in cardiac diseases and cardiac remodeling post-myocardial infarction. However, the activation and function of MAPKs in coronary thrombosis in vivo and its relationship with clinical outcomes remain poorly understood. APPROACH AND RESULTS: Here, we showed that p38α was the major isoform expressed in human and mouse platelets. Platelet-specific p38α-deficient mice presented impaired thrombosis and hemostasis but had improved cardiac function, reduced infarct size, decreased inflammatory response, and microthrombus in a left anterior descending artery ligation model. Signaling analysis revealed that p38 activation was one of the earliest events in platelets after treatment with receptor agonists or reactive oxygen species. p38α/MAPK-activated protein kinase 2/heat shock protein 27 and p38α/cytosolic phospholipases A2 were the major pathways regulating receptor-mediated or hydrogen peroxide-induced platelet activation in an ischemic environment. Moreover, the distinct roles of ERK1/2 (extracellular signal-regulated kinase) in receptor- or reactive oxygen species-induced p38-mediated platelet activation reflected the complicated synergistic relationships among MAPKs. Analysis of clinical samples revealed that MAPKs were highly phosphorylated in platelets from preoperative patients with ST-segment-elevation myocardial infarction, and increased phosphorylation of p38 was associated with no-reflow outcomes. CONCLUSIONS: We conclude that p38α serves as a critical regulator of platelet activation and potential indicator of highly thrombotic lesions and no-reflow, and inhibition of platelet p38α may improve clinical outcomes in subjects with ST-segment-elevation myocardial infarction.


Assuntos
Plaquetas/enzimologia , Proteína Quinase 14 Ativada por Mitógeno/deficiência , Ativação Plaquetária , Infarto do Miocárdio com Supradesnível do Segmento ST/enzimologia , Função Ventricular Esquerda , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Genótipo , Proteínas de Choque Térmico HSP27/metabolismo , Hemostasia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Quinase 14 Ativada por Mitógeno/sangue , Proteína Quinase 14 Ativada por Mitógeno/genética , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Fenômeno de não Refluxo/sangue , Fenômeno de não Refluxo/enzimologia , Fenômeno de não Refluxo/fisiopatologia , Fenótipo , Fosfolipases A2 Citosólicas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Transdução de Sinais , Volume Sistólico , Trombose/sangue , Trombose/enzimologia
19.
Nature ; 485(7397): 251-5, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22535248

RESUMO

Heart failure is a leading cause of morbidity and mortality in industrialized countries. Although infection with microorganisms is not involved in the development of heart failure in most cases, inflammation has been implicated in the pathogenesis of heart failure. However, the mechanisms responsible for initiating and integrating inflammatory responses within the heart remain poorly defined. Mitochondria are evolutionary endosymbionts derived from bacteria and contain DNA similar to bacterial DNA. Mitochondria damaged by external haemodynamic stress are degraded by the autophagy/lysosome system in cardiomyocytes. Here we show that mitochondrial DNA that escapes from autophagy cell-autonomously leads to Toll-like receptor (TLR) 9-mediated inflammatory responses in cardiomyocytes and is capable of inducing myocarditis and dilated cardiomyopathy. Cardiac-specific deletion of lysosomal deoxyribonuclease (DNase) II showed no cardiac phenotypes under baseline conditions, but increased mortality and caused severe myocarditis and dilated cardiomyopathy 10 days after treatment with pressure overload. Early in the pathogenesis, DNase II-deficient hearts showed infiltration of inflammatory cells and increased messenger RNA expression of inflammatory cytokines, with accumulation of mitochondrial DNA deposits in autolysosomes in the myocardium. Administration of inhibitory oligodeoxynucleotides against TLR9, which is known to be activated by bacterial DNA, or ablation of Tlr9 attenuated the development of cardiomyopathy in DNase II-deficient mice. Furthermore, Tlr9 ablation improved pressure overload-induced cardiac dysfunction and inflammation even in mice with wild-type Dnase2a alleles. These data provide new perspectives on the mechanism of genesis of chronic inflammation in failing hearts.


Assuntos
Autofagia , DNA Mitocondrial/imunologia , DNA Mitocondrial/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Miocardite/etiologia , Miocardite/imunologia , Alelos , Animais , Aorta/patologia , Cardiomegalia/etiologia , Constrição Patológica/complicações , Citocinas/genética , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Coração/fisiopatologia , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Masculino , Camundongos , Mitocôndrias , Miocardite/metabolismo , Miocardite/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pressão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/antagonistas & inibidores , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
20.
Circulation ; 134(11): 817-32, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27559042

RESUMO

BACKGROUND: Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). METHODS: Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. RESULTS: ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. CONCLUSIONS: This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of antihypertrophic and profibrotic growth factors.


Assuntos
Fibrilação Atrial/metabolismo , Decorina , Miostatina/antagonistas & inibidores , Peptídeos , Animais , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Decorina/química , Decorina/metabolismo , Decorina/farmacologia , Feminino , Células HEK293 , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miostatina/metabolismo , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA