Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Clin Nutr Metab Care ; 22(5): 355-362, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31145123

RESUMO

PURPOSE OF REVIEW: In addition to the currently available lysosomotropic drugs and autophagy whole-body knockout mouse models, we provide alternative methods that enable the modulation and detection of autophagic flux in vivo, discussing advantages and disadvantages of each method. RECENT FINDINGS: With the autophagosome-lysosome fusion inhibitor colchicine in skeletal muscle and temporal downregulation of autophagy using a novel Autophagy related 5-short hairpin RNA (Atg5-shRNA) mouse model we mention two models that directly modulate autophagy flux in vivo. Furthermore, methods to quantify autophagy flux, such as mitophagy transgenic reporters, in situ immunofluorescent staining and multispectral imaging flow cytometry, in mature skeletal muscle and cells are addressed. SUMMARY: To achieve clinical benefit, less toxic, temporary and cell-type-specific modulation of autophagy should be pursued further. A temporary knockdown as described for the Atg5-shRNA mice could provide a first insight into possible implications of autophagy inhibition. However, it is also important to take a closer look into the methods to evaluate autophagy after harvesting the tissue. In particular caution is required when experimental conditions can influence the final measurement and this should be pretested carefully.


Assuntos
Autofagia/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Animais , Autofagossomos , Lisossomos , Camundongos , Camundongos Knockout
2.
Cardiovasc Ultrasound ; 17(1): 7, 2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31010431

RESUMO

Echocardiography is the most commonly applied technique for non-invasive assessment of cardiac function in small animals. Manual tracing of endocardial borders is time consuming and varies with operator experience. Therefore, we aimed to evaluate a novel automated two-dimensional software algorithm (Auto2DE) for small animals and compare it to the standard use of manual 2D-echocardiographic assessment (2DE). We hypothesized that novel Auto2DE will provide rapid and robust data sets, which are in agreement with manually assessed data of animals.2DE and Auto2DE were carried out using a high-resolution imaging-system for small animals. First, validation cohorts of mouse and rat cine loops were used to compare Auto2DE against 2DE. These data were stratified for image quality by a blinded expert in small animal imaging. Second, we evaluated 2DE and Auto2DE in four mouse models and four rat models with different cardiac pathologies.Automated assessment of LV function by 2DE was faster than conventional 2DE analysis and independent of operator experience levels. The accuracy of Auto2DE-assessed data in healthy mice was dependent on cine loop quality, with excellent agreement between Auto2DE and 2DE in cine loops with adequate quality. Auto2DE allowed for valid detection of impaired cardiac function in animal models with pronounced cardiac phenotypes, but yielded poor performance in diabetic animal models independent of image quality.Auto2DE represents a novel automated analysis tool for rapid assessment of LV function, which is suitable for data acquisition in studies with good and very good echocardiographic image quality, but presents systematic problems in specific pathologies.


Assuntos
Algoritmos , Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Disfunção Ventricular Esquerda/diagnóstico , Função Ventricular Esquerda/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Ratos , Ratos Transgênicos , Reprodutibilidade dos Testes , Disfunção Ventricular Esquerda/fisiopatologia
3.
Cardiovasc Ultrasound ; 16(1): 10, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29966517

RESUMO

BACKGROUND: The assessment of ventricular volumes using conventional echocardiography methods is limited with regards to the need of geometrical assumptions. In the present study, we aimed to evaluate a novel commercial system for three-dimensional echocardiography (3DE) in preclinical models by direct comparison with conventional 1D- and 2D-echocardiography (1DE; 2DE) and the gold-standard technique magnetic resonance imaging (MRI). Further, we provide a standard operating protocol for image acquisition and analysis with 3DE. METHODS: 3DE was carried out using a 30 MHz center frequency transducer coupled to a Vevo®3100 Imaging System. We evaluated under different experimental conditions: 1) in vitro phantom measurements served as controlled setting in which boundaries were clearly delineated; 2) a validation cohort composed of healthy C57BL/6 J mice and New Zealand Obese (NZO) mice was used in order to validate 3DE against cardiac MRI; 3) a standard mouse model of pressure overload induced-heart failure was investigated to estimate the value of 3DE. RESULTS: First, in vitro volumetry revealed good agreement between 3DE assessed volumes and the MRI-assessed volumes. Second, cardiac volume determination with 3DE showed smaller mean differences compared to cardiac MRI than conventional 1DE and 2DE. Third, 3DE was suitable to detect reduced ejection fractions in heart failure mice. Fourth, inter- and intra-observer variability of 3DE showed good to excellent agreement regarding absolute volumes in healthy mice, whereas agreement rates for the relative metrics ejection fraction and stroke volume demonstrated good to moderate observer variabilities. CONCLUSIONS: 3DE provides a novel method for accurate volumetry in small animals without the need for spatial assumptions, demonstrating a technique for an improved analysis of ventricular function. Further validation work and highly standardized image analyses are required to increase reproducibility of this approach.


Assuntos
Ecocardiografia Tridimensional , Insuficiência Cardíaca/diagnóstico por imagem , Volume Sistólico , Animais , Modelos Animais de Doenças , Ecocardiografia , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Variações Dependentes do Observador , Reprodutibilidade dos Testes
4.
Free Radic Biol Med ; 218: 149-165, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570171

RESUMO

Proper protein degradation is required for cellular protein homeostasis and organ function. Particularly, in post-mitotic cells, such as cardiomyocytes, unbalanced proteolysis due to inflammatory stimuli and oxidative stress contributes to organ dysfunction. To ensure appropriate protein turnover, eukaryotic cells exert two main degradation systems, the ubiquitin-proteasome-system and the autophagy-lysosome-pathway. It has been shown that proteasome activity affects the development of cardiac dysfunction differently, depending on the type of heart failure. Studies analyzing the inducible subtype of the proteasome, the immunoproteasome (i20S), demonstrated that the i20S plays a double role in diseased hearts. While i20S subunits are increased in cardiac hypertrophy, atrial fibrillation and partly in myocarditis, the opposite applies to diabetic cardiomyopathy and ischemia/reperfusion injury. In addition, the i20S appears to play a role in autophagy modulation depending on heart failure phenotype. This review summarizes the current literature on the i20S in different heart failure phenotypes, emphasizing the two faces of i20S in injured hearts. A selection of established i20S inhibitors is introduced and signaling pathways linking the i20S to autophagy are highlighted. Mapping the interplay of the i20S and autophagy in different types of heart failure offers potential approaches for developing treatment strategies against heart failure.


Assuntos
Autofagia , Insuficiência Cardíaca , Complexo de Endopeptidases do Proteassoma , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/imunologia , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Fenótipo , Transdução de Sinais , Proteólise , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/genética , Miocardite/patologia , Miocardite/metabolismo , Miocardite/imunologia , Miocardite/genética , Cardiomegalia/patologia , Cardiomegalia/metabolismo , Cardiomegalia/genética
5.
Biochem J ; 448(1): 127-39, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22892029

RESUMO

AGEs (advanced glycation-end products) accumulate during aging and several pathologies such as Alzheimer's disease and diabetes. These protein products are known to inhibit proteolytic pathways. Moreover, AGEs are known to be involved in the activation of immune responses. In the present study we demonstrate that AGEs induce the expression of immunoproteasomal subunits. To elucidate a molecular basis underlying the observed effects we were able to demonstrate an activation of the Jak2 (Janus kinase 2)/STAT1 (signal transducer and activator of transcription 1) pathway. Inhibition of Jak2 by AG-490 and STAT1 by specific siRNA (small interfering RNA) abolished AGE-induced expression of immunoproteasomal subunits. Furthermore, silencing of RAGE (receptor for AGEs) revealed that AGE-induced up-regulation of the immunoproteasome is mediated by a RAGE signalling process. Thus we have described for the first time that the signalling pathway of Jak2 and STAT1 activated by AGEs via RAGE is involved in the induction of the immunoproteasome.


Assuntos
Produtos Finais de Glicação Avançada/farmacologia , Janus Quinase 2/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Imunológicos/fisiologia , Fator de Transcrição STAT1/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral/metabolismo , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/genética , Regulação da Expressão Gênica/genética , Interferon gama/fisiologia , Macrófagos/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/biossíntese , Complexo de Endopeptidases do Proteassoma/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/biossíntese , Receptores Imunológicos/genética , Soroalbumina Bovina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Tirfostinas/farmacologia
6.
Sci Rep ; 13(1): 2461, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774394

RESUMO

After providing the free software MYOCYTER that analyzes a large amount of data from videos of contracting cells, tissues or organs, we now present an "Arduino"-based programmable, customizable and cost-effective electronic pacemaker ("MyoPulser") that triggers contraction by electric stimulation of the sample at arbitrary frequencies. In this work, construction, functions and application of the MyoPulser are explained in detail, the electronic pacemaker is also tested on isolated cardiomyocytes and HT22-cells to quantify biological effects of pacing. The device enables the user to select between different pulse types (monophasic, alternating, bi- and polyphasic) adjust the length of an applied pulse (1-200 ms), the gap between two consecutive pulses (20-2000 ms), application of irregular pulses with random length and gaps (simulation of arrhythmia) in a user-defined range, as well as manual pulsing, while extensive data are recorded for every single pulse during the experiment. Electrostimulation of isolated B6 cardiomyocytes showed very little deviation of the observed cellular contraction from the applied pulse settings of the device, while the carbon electrodes used proved to be biologically inert in long-term experiments. Due to the open source code and the expandable setup, the MyoPulser can be easily adapted to even highly specific requirements and together with the software MYOCYTER it represents a complete cardiomyophysiological measuring station.


Assuntos
Marca-Passo Artificial , Software , Simulação por Computador , Miócitos Cardíacos , Eletrônica
7.
Mech Ageing Dev ; 215: 111869, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37678569

RESUMO

Iron is the most abundant trace element in the human body. Since iron can switch between its 2-valent and 3-valent form it is essential in various physiological processes such as energy production, proliferation or DNA synthesis. Especially high metabolic organs such as the heart rely on iron-associated iron-sulfur and heme proteins. However, due to switches in iron oxidation state, iron overload exhibits high toxicity through formation of reactive oxygen species, underlining the importance of balanced iron levels. Growing evidence demonstrates disturbance of this balance during aging. While age-associated cardiovascular diseases are often related to iron deficiency, in physiological aging cardiac iron accumulates. To understand these changes, we focused on inflammation and proteolysis, two hallmarks of aging, and their role in iron metabolism. Via the IL-6-hepcidin axis, inflammation and iron status are strongly connected often resulting in anemia accompanied by infiltration of macrophages. This tight connection between anemia and inflammation highlights the importance of the macrophage iron metabolism during inflammation. Age-related decrease in proteolytic activity additionally affects iron balance due to impaired degradation of iron metabolism proteins. Therefore, this review accentuates alterations in iron metabolism during aging with regards to inflammation and proteolysis to draw attention to their implications and associations.


Assuntos
Anemia , Ferro , Humanos , Ferro/metabolismo , Proteólise , Anemia/complicações , Inflamação , Envelhecimento/metabolismo
8.
Front Cell Dev Biol ; 11: 1122998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994103

RESUMO

The autophagy lysosomal system (ALS) is crucial for cellular homeostasis, contributing to maintain whole body health and alterations are associated with diseases like cancer or cardiovascular diseases. For determining the autophagic flux, inhibition of lysosomal degradation is mandatory, highly complicating autophagy measurement in vivo. To overcome this, herein blood cells were used as they are easy and routinely to isolate. Within this study we provide detailed protocols for determination of the autophagic flux in peripheral blood mononuclear cells (PBMCs) isolated from human and, to our knowledge the first time, also from murine whole blood, extensively discussing advantages and disadvantages of both methods. Isolation of PBMCs was performed using density gradient centrifugation. To minimize changes on the autophagic flux through experimental conditions, cells were directly treated with concanamycin A (ConA) for 2 h at 37°C in their serum or for murine cells in serum filled up with NaCl. ConA treatment decreased lysosomal cathepsins activity and increased Sequestosome 1 (SQSTM1) protein and LC3A/B-II:LC3A/B-I ratio in murine PBMCs, while transcription factor EB was not altered yet. Aging further enhanced ConA-associated increase in SQSTM1 protein in murine PBMCs but not in cardiomyocytes, indicating tissue-specific differences in autophagic flux. In human PBMCs, ConA treatment also decreased lysosomal activity and increased LC3A/B-II protein levels, demonstrating successful autophagic flux detection in human subjects. In summary, both protocols are suitable to determine the autophagic flux in murine and human samples and may facilitate a better mechanistic understanding of altered autophagy in aging and disease models and to further develop novel treatment strategies.

9.
Mol Metab ; 75: 101774, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429525

RESUMO

OBJECTIVES: Better disease management can be achieved with earlier detection through robust, sensitive, and easily accessible biomarkers. The aim of the current study was to identify novel epigenetic biomarkers determining the risk of type 2 diabetes (T2D). METHODS: Livers of 10-week-old female New Zealand Obese (NZO) mice, slightly differing in their degree of hyperglycemia and liver fat content and thereby in their diabetes susceptibility were used for expression and methylation profiling. We screened for differences in hepatic expression and DNA methylation in diabetes-prone and -resistant mice, and verified a candidate (HAMP) in human livers and blood cells. Hamp expression was manipulated in primary hepatocytes and insulin-stimulated pAKT was detected. Luciferase reporter assays were conducted in a murine liver cell line to test the impact of DNA methylation on promoter activity. RESULTS: In livers of NZO mice, the overlap of methylome and transcriptome analyses revealed a potential transcriptional dysregulation of 12 hepatokines. The strongest effect with a 52% decreased expression in livers of diabetes-prone mice was detected for the Hamp gene, mediated by elevated DNA methylation of two CpG sites located in the promoter. Hamp encodes the iron-regulatory hormone hepcidin, which had a lower abundance in the livers of mice prone to developing diabetes. Suppression of Hamp reduces the levels of pAKT in insulin-treated hepatocytes. In liver biopsies of obese insulin-resistant women, HAMP expression was significantly downregulated along with increased DNA methylation of a homologous CpG site. In blood cells of incident T2D cases from the prospective EPIC-Potsdam cohort, higher DNA methylation of two CpG sites was related to increased risk of incident diabetes. CONCLUSIONS: We identified epigenetic changes in the HAMP gene which may be used as an early marker preceding T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Hepcidinas , Humanos , Feminino , Camundongos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Metilação de DNA , Diabetes Mellitus Tipo 2/metabolismo , Estudos Prospectivos , Insulina/metabolismo , Obesidade/genética , Biomarcadores/metabolismo , Células Sanguíneas/metabolismo
10.
Nat Commun ; 14(1): 3479, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311819

RESUMO

Selenium homeostasis depends on hepatic biosynthesis of selenoprotein P (SELENOP) and SELENOP-mediated transport from the liver to e.g. the brain. In addition, the liver maintains copper homeostasis. Selenium and copper metabolism are inversely regulated, as increasing copper and decreasing selenium levels are observed in blood during aging and inflammation. Here we show that copper treatment increased intracellular selenium and SELENOP in hepatocytes and decreased extracellular SELENOP levels. Hepatic accumulation of copper is a characteristic of Wilson's disease. Accordingly, SELENOP levels were low in serum of Wilson's disease patients and Wilson's rats. Mechanistically, drugs targeting protein transport in the Golgi complex mimicked some of the effects observed, indicating a disrupting effect of excessive copper on intracellular SELENOP transport resulting in its accumulation in the late Golgi. Our data suggest that hepatic copper levels determine SELENOP release from the liver and may affect selenium transport to peripheral organs such as the brain.


Assuntos
Degeneração Hepatolenticular , Selênio , Animais , Ratos , Selenoproteína P , Cobre
11.
J Gerontol A Biol Sci Med Sci ; 77(5): 934-940, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-34726231

RESUMO

Dicarbonyl stress describes the increased formation of 1,2-dicarbonyl compounds and is associated with age-related pathologies. The role of dicarbonyl stress in healthy aging is poorly understood. In a preliminary study, we analyzed 1,2-dicarbonyl compounds, namely 3-deoxyglucosone (3-DG), glyoxal (GO), and methylglyoxal (MGO) in plasma of older (25 months, n = 11) and younger (5 months, n = 14) male C57BL/6J (B6) mice via ultra performance liquid chromatography tandem mass spectrometry. Postprandial 3-DG was higher in younger compared to older mice, whereas no differences were found for GO and MGO. Subsequently, in the main study, we analyzed fasting serum of older women (OW, 72.4 ± 6.14 years, n = 19) and younger women (YW, 27.0 ± 4.42 years, n = 19) as well as older men (OM, 74.3 ± 5.20 years, n = 15) and younger men (YM, 27.0 ± 3.34, n = 15). Serum glucose, insulin, 1,2-dicarbonyl concentrations, and markers of oxidative stress were quantified. In a subgroup of this cohort, an oral dextrose challenge was performed, and postprandial response of 1,2-dicarbonyl compounds, glucose, and insulin were measured. In women, there were no age differences regarding fasting 1,2-dicarbonyl concentrations nor the response after the oral dextrose challenge. In men, fasting MGO was significantly higher in OM compared to YM (median: 231 vs 158 nM, p = .006), whereas no age differences in fasting 3-DG and GO concentrations were found. Glucose (310 ± 71.8 vs 70.8 ± 11.9 min·mmol/L) and insulin (7 149 ± 1 249 vs 2 827 ± 493 min·µIU/mL) response were higher in OM compared to YM, which did not translate into a higher 1,2-dicarbonyl response in older individuals. Overall, aging does not necessarily result in dicarbonyl stress, indicating that strategies to cope with 1,2-dicarbonyl formation can remain intact.


Assuntos
Glioxal , Insulinas , Idoso , Animais , Desoxiglucose/análogos & derivados , Jejum , Feminino , Glucose , Humanos , Óxido de Magnésio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aldeído Pirúvico
12.
Front Nutr ; 9: 941286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938125

RESUMO

Glucosinolates are plant secondary metabolites found in cruciferous vegetables (Brassicaceae) that are valued for their potential health benefits. Frequently consumed representatives of these vegetables, for example, are white or red cabbage, which are typically boiled before consumption. Recently, 3-alk(en)yl-4-hydroxythiazolidine-2-thiones were identified as a class of thermal glucosinolate degradation products that are formed during the boiling of cabbage. Since these newly discovered compounds are frequently consumed, this raises questions about their potential uptake and their possible bioactive functions. Therefore, 3-allyl-4-hydroxythiazolidine-2-thione (allyl HTT) and 4-hydroxy-3-(4-(methylsulfinyl) butyl)thiazolidine-2-thione (4-MSOB HTT) as degradation products of the respective glucosinolates sinigrin and glucoraphanin were investigated. After consumption of boiled red cabbage broth, recoveries of consumed amounts of the degradation products in urine collected for 24 h were 18 ± 5% for allyl HTT and 21 ± 4% for 4-MSOB HTT (mean ± SD, n = 3). To investigate the stability of the degradation products during uptake and to elucidate the uptake mechanism, both an in vitro stomach and an in vitro intestinal model were applied. The results indicate that the uptake of allyl HTT and 4-MSOB HTT occurs by passive diffusion. Both compounds show no acute cell toxicity, no antioxidant potential, and no change in NAD(P)H dehydrogenase quinone 1 (NQO1) activity up to 100 µM. However, inhibition of glycogen synthase kinases-3 (GSK-3) in the range of 20% for allyl HTT for the isoform GSK-3ß and 29% for 4-MSOB HTT for the isoform GSK-3α at a concentration of 100 µM was found. Neither health-promoting nor toxic effects of 3-alk(en)yl-4-hydroxythiazolidine-2-thiones were found in the four tested assays carried out in this study, which contrasts with the properties of other glucosinolate degradation products, such as isothiocyanates.

13.
Nat Cardiovasc Res ; 1(7): 649-664, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36034743

RESUMO

Sudden cardiac death, arising from abnormal electrical conduction, occurs frequently in patients with coronary heart disease. Myocardial ischemia simultaneously induces arrhythmia and massive myocardial leukocyte changes. In this study, we optimized a mouse model in which hypokalemia combined with myocardial infarction triggered spontaneous ventricular tachycardia in ambulatory mice, and we showed that major leukocyte subsets have opposing effects on cardiac conduction. Neutrophils increased ventricular tachycardia via lipocalin-2 in mice, whereas neutrophilia associated with ventricular tachycardia in patients. In contrast, macrophages protected against arrhythmia. Depleting recruited macrophages in Ccr2 -/- mice or all macrophage subsets with Csf1 receptor inhibition increased both ventricular tachycardia and fibrillation. Higher arrhythmia burden and mortality in Cd36 -/- and Mertk -/- mice, viewed together with reduced mitochondrial integrity and accelerated cardiomyocyte death in the absence of macrophages, indicated that receptor-mediated phagocytosis protects against lethal electrical storm. Thus, modulation of leukocyte function provides a potential therapeutic pathway for reducing the risk of sudden cardiac death.

14.
Antioxidants (Basel) ; 10(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804819

RESUMO

Non-alcoholic fatty liver disease (NAFLD), as a consequence of overnutrition caused by high-calorie diets, results in obesity and disturbed lipid homeostasis leading to hepatic lipid droplet formation. Lipid droplets can impair hepatocellular function; therefore, it is of utmost importance to degrade these cellular structures. This requires the normal function of the autophagic-lysosomal system and the ubiquitin-proteasomal system. We demonstrated in NZO mice, a polygenic model of obesity, which were compared to C57BL/6J (B6) mice, that a high-fat diet leads to obesity and accumulation of lipid droplets in the liver. This was accompanied by a loss of autophagy efficiency whereas the activity of lysosomal proteases and the 20S proteasome remained unaffected. The disturbance of cellular protein homeostasis was further demonstrated by the accumulation of 3-nitrotyrosine and 4-hydroxynonenal modified proteins, which are normally prone to degradation. Therefore, we conclude that fat accumulation in the liver due to a high-fat diet is associated with a failure of autophagy and leads to the disturbance of proteostasis. This might further contribute to lipid droplet stabilization and accumulation.

15.
Mol Metab ; 53: 101276, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34153520

RESUMO

OBJECTIVE: Insulin regulates mitochondrial function, thereby propagating an efficient metabolism. Conversely, diabetes and insulin resistance are linked to mitochondrial dysfunction with a decreased expression of the mitochondrial chaperone HSP60. The aim of this investigation was to determine the effect of a reduced HSP60 expression on the development of obesity and insulin resistance. METHODS: Control and heterozygous whole-body HSP60 knockout (Hsp60+/-) mice were fed a high-fat diet (HFD, 60% calories from fat) for 16 weeks and subjected to extensive metabolic phenotyping. To understand the effect of HSP60 on white adipose tissue, microarray analysis of gonadal WAT was performed, ex vivo experiments were performed, and a lentiviral knockdown of HSP60 in 3T3-L1 cells was conducted to gain detailed insights into the effect of reduced HSP60 levels on adipocyte homeostasis. RESULTS: Male Hsp60+/- mice exhibited lower body weight with lower fat mass. These mice exhibited improved insulin sensitivity compared to control, as assessed by Matsuda Index and HOMA-IR. Accordingly, insulin levels were significantly reduced in Hsp60+/- mice in a glucose tolerance test. However, Hsp60+/- mice exhibited an altered adipose tissue metabolism with elevated insulin-independent glucose uptake, adipocyte hyperplasia in the presence of mitochondrial dysfunction, altered autophagy, and local insulin resistance. CONCLUSIONS: We discovered that the reduction of HSP60 in mice predominantly affects adipose tissue homeostasis, leading to beneficial alterations in body weight, body composition, and adipocyte morphology, albeit exhibiting local insulin resistance.


Assuntos
Tecido Adiposo Branco/metabolismo , Chaperonina 60/metabolismo , Proteínas Mitocondriais/metabolismo , Obesidade/metabolismo , Células 3T3-L1 , Animais , Células Cultivadas , Chaperonina 60/deficiência , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Homeostase , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/deficiência
16.
Redox Biol ; 46: 102106, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34455147

RESUMO

Removal of moderately oxidized proteins is mainly carried out by the proteasome, while highly modified proteins are no longer degradable. However, in the case of proteins modified by nitration of tyrosine residues to 3-nitrotyrosine (NO2Y), the role of the proteasome remains to be established. For this purpose, degradation assays and mass spectrometry analyses were performed using isolated proteasome and purified fractions of native cytochrome c (Cyt c) and tyrosine nitrated proteoforms (NO2Y74-Cyt c and NO2Y97-Cyt c). While Cyt c treated under mild conditions with hydrogen peroxide was preferentially degraded by the proteasome, NO2Y74- and NO2Y97-Cyt c species did not show an increased degradation rate with respect to native Cyt c. Peptide mapping analysis confirmed a decreased chymotrypsin-like cleavage at C-terminal of NO2Y sites within the protein, with respect to unmodified Y residues. Additionally, studies with the proteasome substrate suc-LLVY-AMC (Y-AMC) and its NO2Y-containing analog, suc-LLVNO2Y-AMC (NO2Y-AMC) were performed, both using isolated 20S-proteasome and astrocytoma cell lysates as the proteasomal source. Comparisons of both substrates showed a significantly decreased proteasome activity towards NO2Y-AMC. Moreover, NO2Y-AMC, but not Y-AMC degradation rates, were largely diminished by increasing the reaction pH, suggesting an inhibitory influence of the additional negative charge contained in NO2Y-AMC secondary to nitration. The mechanism of slowing of proteasome activity in NO2Y-contaning peptides was further substantiated in studies using the phenylalanine and nitro-phenylalanine peptide analog substrates. Finally, degradation rates of Y-AMC and NO2Y-AMC with proteinase K were the same, demonstrating the selective inability of the proteasome to readily cleave at nitrotyrosine sites. Altogether, data indicate that the proteasome has a decreased capability to cleave at C-terminal of NO2Y residues in proteins with respect to the unmodified residues, making this a possible factor that decreases the turnover of oxidized proteins, if they are not unfolded, and facilitating the accumulation of nitrated proteins.


Assuntos
Complexo de Endopeptidases do Proteassoma , Tirosina , Peptídeos , Proteínas , Tirosina/análogos & derivados
17.
Cells ; 10(4)2021 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916597

RESUMO

Cardiac remodeling and contractile dysfunction are leading causes in hypertrophy-associated heart failure (HF), increasing with a population's rising age. A hallmark of aged and diseased hearts is the accumulation of modified proteins caused by an impaired autophagy-lysosomal-pathway. Although, autophagy inducer rapamycin has been described to exert cardioprotective effects, it remains to be shown whether these effects can be attributed to improved cardiomyocyte autophagy and contractility. In vivo hypertrophy was induced by transverse aortic constriction (TAC), with mice receiving daily rapamycin injections beginning six weeks after surgery for four weeks. Echocardiographic analysis demonstrated TAC-induced HF and protein analyses showed abundance of modified proteins in TAC-hearts after 10 weeks, both reduced by rapamycin. In vitro, cardiomyocyte hypertrophy was mimicked by endothelin 1 (ET-1) and autophagy manipulated by silencing Atg5 in neonatal cardiomyocytes. ET-1 and siAtg5 decreased Atg5-Atg12 and LC3-II, increased natriuretic peptides, and decreased amplitude and early phase of contraction in cardiomyocytes, the latter two evaluated using ImageJ macro Myocyter recently developed by us. ET-1 further decreased cell contractility in control but not in siAtg5 cells. In conclusion, ET-1 decreased autophagy and cardiomyocyte contractility, in line with siAtg5-treated cells and the results of TAC-mice demonstrating a crucial role for autophagy in cardiomyocyte contractility and cardiac performance.


Assuntos
Autofagia , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Contração Miocárdica , Miocárdio/patologia , Miócitos Cardíacos/patologia , Animais , Animais Recém-Nascidos , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Cardiomegalia/complicações , Cardiomegalia/diagnóstico por imagem , Ecocardiografia , Endotelina-1/metabolismo , Inativação Gênica , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Pressão , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Disfunção Ventricular Esquerda/complicações , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
18.
J Am Heart Assoc ; 10(23): e023131, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34779224

RESUMO

Background Degenerative aortic valve (AoV) disease and resulting aortic stenosis are major clinical health problems. Murine models of valve disease are rare, resulting in a translational knowledge gap on underlying mechanisms, functional consequences, and potential therapies. Naïve New Zealand obese (NZO) mice were recently found to have a dramatic decline of left ventricular (LV) function at early age. Therefore, we aimed to identify the underlying cause of reduced LV function in NZO mice. Methods and Results Cardiac function and pulmonary hemodynamics of NZO and age-matched C57BL/6J mice were monitored by serial echocardiographic examinations. AoVs in NZO mice demonstrated extensive thickening, asymmetric aortic leaflet formation, and cartilaginous transformation of the valvular stroma. Doppler echocardiography of the aorta revealed increased peak velocity profiles, holodiastolic flow reversal, and dilatation of the ascending aorta, consistent with aortic stenosis and regurgitation. Compensated LV hypertrophy deteriorated to decompensated LV failure and remodeling, as indicated by increased LV mass, interstitial fibrosis, and inflammatory cell infiltration. Elevated LV pressures in NZO mice were associated with lung congestion and cor pulmonale, evident as right ventricular dilatation, decreased right ventricular function, and increased mean right ventricular systolic pressure, indicative for the development of pulmonary hypertension and ultimately right ventricular failure. Conclusions NZO mice demonstrate as a novel murine model to spontaneously develop degenerative AoV disease, aortic stenosis, and the associated end organ damages of both ventricles and the lung. Closely mimicking the clinical scenario of degenerative AoV disease, the model may facilitate a better mechanistic understanding and testing of novel treatment strategies in degenerative AoV disease.


Assuntos
Valvopatia Aórtica , Animais , Valvopatia Aórtica/patologia , Estenose da Valva Aórtica , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Nova Zelândia
19.
Free Radic Biol Med ; 152: 516-524, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31760091

RESUMO

The Maillard reaction generates protein modifications which can accumulate during hyperglycemia or aging and may have inflammatory consequences. The proteasome is one of the major intracellular systems involved in the proteolytic degradation of modified proteins but its role in the degradation of glycated proteins is scarcely studied. In this study, chemical and structural changes of glycated myoglobin were analyzed and its degradation by 20S proteasome was studied. Myoglobin was incubated with physiological (5-10 mM), moderate (50-100 mM) and severe levels (300 mM) of glucose or methylglyoxal (MGO, 50 mM). Glycation increased myoglobin's fluorescence and surface hydrophobicity. Severe glycation generated crosslinked proteins as shown by gel electrophoresis. The concentration of advanced glycation endproducts (AGEs) N-ε-carboxymethyl lysine (CML), N-ε-carboxyethyl lysine (CEL), methylglyoxal-derived hydroimidazolone-1 (MG-H1), pentosidine and pyrraline was analyzed after enzymatic hydrolysis followed by UPLC-MS/MS. Higher concentrations of glucose increased all analyzed AGEs and incubation with MGO led to a pronounced increase of CEL and MG-H1. The binding of the heme group to apo-myoglobin was decreased with increasing glycation indicating the loss of tertiary protein structure. Proteasomal degradation of modified myoglobin compared to native myoglobin depends on the degree of glycation: physiological conditions decreased proteasomal degradation whereas moderate glycation increased degradation. Severe glycation again decreased proteolytic cleavage which might be due to crosslinking of protein monomers. The activity of the proteasomal subunit ß5 is influenced by the presence of glycated myoglobin. In conclusion, the role of the proteasome in the degradation of glycated proteins is highly dependent on the level of glycation and consequent protein unfolding.


Assuntos
Produtos Finais de Glicação Avançada , Mioglobina , Cromatografia Líquida , Aldeído Pirúvico , Espectrometria de Massas em Tandem
20.
Mol Nutr Food Res ; 64(20): e2000816, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32918380

RESUMO

SCOPE: Several studies show that excessive lipid intake can cause hepatic steatosis. To investigate lipotoxicity on cellular level, palmitate (PA) is often used to highly increase lipid droplets (LDs). One way to remove LDs is autophagy, while it is controversially discussed if autophagy is also affected by PA. It is aimed to investigate whether PA-induced LD accumulation can impair autophagy and punicalagin, a natural autophagy inducer from pomegranate, can improve it. METHODS AND RESULTS: To verify the role of autophagy in LD degradation, HepG2 cells are treated with PA and analyzed for LD and perilipin 2 content in presence of autophagy inducer Torin 1 and inhibitor 3-Methyladenine. PA alone seems to initially induce autophagy-related proteins but impairs autophagic-flux in a time-dependent manner, considering 6 and 24 h PA. To examine whether punicalagin can prevent autophagy impairment, cells are cotreated for 24 h with PA and punicalagin. Results show that punicalagin preserves expression of autophagy-related proteins and autophagic flux, while simultaneously decreasing LDs and perilipin 2. CONCLUSION: Data provide new insights into the role of PA-induced excessive LD content on autophagy and suggest autophagy-inducing properties of punicalagin, indicating that punicalagin can be a health-beneficial compound for future research on lipotoxicity in liver.


Assuntos
Autofagia/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Gotículas Lipídicas/efeitos dos fármacos , Palmitatos/farmacologia , Autofagia/fisiologia , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Palmitatos/administração & dosagem , Perilipina-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA