Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microorganisms ; 12(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38930424

RESUMO

(1) Background: The mycophagous mite, Tyrophagus putrescentiae, was found to feed on entomopathogenic fungi (EPF) in our previous experiments, which seriously impacted the culture and preservation of fungal strains. Therefore, it is necessary to investigate the biological characteristics of the occurrence and damage to EPF. (2) Methods: The mite's growth and development and feeding preference were surveyed by comparative culture and observation; also, optical and electronic microscopies were employed. (3) Results: T. putrescentiae could survive normally after being fed on seven EPF species, including Purpureocillium lilacinum, Marquandii marquandii, Cordyceps fumosorosea, Beauveria bassiana, Metarhizium flavoviride, Lecanicillium dimorphum, and Metacordyceps chlamydosporia. The first four fungi were the mite's favorites with their greater feeding amount and shorter developmental duration. Interestingly, the mite could also feed on Metarhizium anisopliae and Metarhizium robertsii, but this led to the mite's death. After feeding on M. anisopliae and M. robertsii, the mites began to die after 24 h, and the mortality rate reached 100% by 72 h. Observation under optical microscopy and scanning electron microscopy revealed that the conidia of M. anisopliae and M. robertsii adhered to the mite's surface, but there was no evidence of penetration or invasion. However, dissection observation indicated that the two Metarhizium species germinate and grow within the mite's digestive tract, which implies that Metarhizium generalists with broad-spectrum hosts and the production of destruxins have acaricidal activity toward the mycophagous mites.

2.
Microorganisms ; 12(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38930423

RESUMO

The genus Purpureocillium is renowned for its role in biocontrol and biotechnological applications. The identification of new species within this genus is crucial for broadening our understanding of its ecological roles and potential utility in sustainable agriculture. This study aimed to characterize a new species of Purpureocillium, isolated from soil in eastern China, and to evaluate its bioactivity against Ostrinia furnacalis (corn moth) and Galleria mellonella (greater wax moth). We utilized morphological characterization; molecular phylogenetic analysis employing ITS, nrLSU, and tef1 genes; and bioactivity assays to identify and characterize the new species. The newly identified species, Purpureocillium jiangxiense sp. nov., displays unique morphological and genetic profiles compared to known species. Bioactivity tests showed that this species exhibits inhibitory effects against O. furnacalis and G. mellonella, highlighting its potential in biocontrol applications. By the ninth day at a spore concentration of 1 × 108 spores/mL, the mortality rate of the corn moth and greater wax moth reached 30% to 50% respectively. The discovery of P. jiangxiense sp. nov. adds to the genetic diversity known within this genus and offers a promising candidate for the development of natural biocontrol agents. It underscores the importance of continued biodiversity exploration and the potential for natural solutions in pest and disease management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA