Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 175: 382-394, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38160853

RESUMO

Conventional Ti-based implants are vulnerable to postsurgical infection and improving the antibacterial efficiency without compromising the osteogenic ability is one of the key issues in bone implant design. Although zinc oxide (ZnO) nanorods grown on Ti substrates hydrothermally can improve the antibacterial properties, but cannot meet the stringent requirements of bone implants, as rapid degradation of ZnO and uncontrolled leaching of Zn2+ are detrimental to peri-implant cells and tissues. To solve these problems, a lattice-damage-free method is adopted to modify the ZnO nanorods with thin calcium phosphate (CaP) shells. The Ca and P ions from the CaP shells diffuse thermally into the ZnO lattice to prevent the ZnO nanorods from rapid degradation and ensure the sustained release of Zn2+ ions as well. Furthermore, the designed heterostructural nanorods not only induce the osteogenic performances of MC3T3-E1 cells but also exhibit excellent antibacterial ability against S. aureus and E. coli bacteria via physical penetration. In vivo studies also reveal that hybrid Ti-ZnO@CaP5 can not only eradicates bacteria in contact, but also provides sufficient biocompatibility without causing excessive inflammation response. Our study provides insights into the design of multifunctional biomaterials for bone implants. STATEMENT OF SIGNIFICANCE: • A lattice-damage-free method is adopted to modify the ZnO nanorods with thin calcium phosphate (CaP) shells. • The dynamic process of Ca and P diffusion into the ZnO lattice is analyzed by experimental verification and theoretical calculation. • The degradation rate of ZnO nanorods is significantly decreased after CaP deposition. • The ZnO nanorods after CaP deposition can not only sterilize bacteria in contact via physical penetration, but also provide sufficient biocompatibility and osteogenic capability without causing excessive inflammation response..


Assuntos
Infecções Bacterianas , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Osteogênese , Cálcio/farmacologia , Titânio/farmacologia , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Fosfatos de Cálcio/farmacologia , Íons/farmacologia , Inflamação
2.
J Funct Biomater ; 14(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37233348

RESUMO

Topographical cues on material surfaces are crucial for guiding the behavior of nerve cells and facilitating the repair of peripheral nerve defects. Previously, micron-grooved surfaces have shown great potential in controlling nerve cell alignment for studying the behavior and functions of those cells and peripheral nerve regeneration. However, the effects of smaller-sized topographical cues, such as those in the submicron- and nano-scales, on Schwann cell behavior remain poorly understood. In this study, four different submicron-grooved polystyrene films (800/400, 800/100, 400/400, and 400/100) were fabricated to study the behavior, gene expression, and membrane potential of Schwann cells. The results showed that all submicron-grooved films could guide the cell alignment and cytoskeleton in a groove depth-dependent manner. Cell proliferation and cell cycle assays revealed that there was no significant difference between the submicron groove samples and the flat control. However, the submicron grooves can direct the migration of cells and upregulate the expression of critical genes in axon regeneration and myelination (e.g., MBP and Smad6). Finally, the membrane potential of the Schwann cells was significantly altered on the grooved sample. In conclusion, this study sheds light on the role of submicron-grooved patterns in regulating the behavior and function of Schwann cells, which provides unique insights for the development of implants for peripheral nerve regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA