Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neuroinflammation ; 20(1): 145, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344842

RESUMO

Cellular adaptation to low oxygen tension triggers primitive pathways that ensure proper cell function. Conditions of hypoxia and low glucose are characteristic of injured tissues and hence successive waves of inflammatory cells must be suited to function under low oxygen tension and metabolic stress. While Hypoxia-Inducible Factor (HIF)-1α has been shown to be essential for the inflammatory response of myeloid cells by regulating the metabolic switch to glycolysis, less is known about how HIF1α is triggered in inflammation. Here, we demonstrate that cells of the innate immune system require activity of the inositol-requiring enzyme 1α (IRE1α/XBP1) axis in order to initiate HIF1α-dependent production of cytokines such as IL1ß, IL6 and VEGF-A. Knockout of either HIF1α or IRE1α in myeloid cells ameliorates vascular phenotypes in a model of retinal pathological angiogenesis driven by sterile inflammation. Thus, pathways associated with ER stress, in partnership with HIF1α, may co-regulate immune adaptation to low oxygen.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Hipóxia , Oxigênio/metabolismo , Células Mieloides/metabolismo , Inflamação/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia
2.
Cell Mol Life Sci ; 79(1): 37, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971428

RESUMO

The roles of nitric oxide (NO) and endothelial NO synthase (eNOS) in the regulation of angiogenesis are well documented. However, the involvement of eNOS in the sprouting of endothelial tip-cells at the vascular front during sprouting angiogenesis remains poorly defined. In this study, we show that downregulation of eNOS markedly inhibits VEGF-stimulated migration of endothelial cells but increases their polarization, as evidenced by the reorientation of the Golgi in migrating monolayers and by the fewer filopodia on tip cells at ends of sprouts in endothelial cell spheroids. The effect of eNOS inhibition on EC polarization was prevented in Par3-depleted cells. Importantly, downregulation of eNOS increased the expression of polarity genes, such as PARD3B, PARD6A, PARD6B, PKCΖ, TJP3, and CRB1 in endothelial cells. In retinas of eNOS knockout mice, vascular development is retarded with decreased vessel density and vascular branching. Furthermore, tip cells at the extremities of the vascular front have a marked reduction in the number of filopodia per cell and are more oriented. In a model of oxygen-induced retinopathy (OIR), eNOS deficient mice are protected during the initial vaso-obliterative phase, have reduced pathological neovascularization, and retinal endothelial tip cells have fewer filopodia. Single-cell RNA sequencing of endothelial cells from OIR retinas revealed enrichment of genes related to cell polarity in the endothelial tip-cell subtype of eNOS deficient mice. These results indicate that inhibition of eNOS alters the polarity program of endothelial cells, which increases cell polarization, regulates sprouting angiogenesis and normalizes pathological neovascularization during retinopathy.


Assuntos
Neovascularização Patológica , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/fisiologia , Retina/metabolismo , Neovascularização Retiniana , Vasos Retinianos , Animais , Bovinos , Linhagem Celular , Movimento Celular , Polaridade Celular , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retina/citologia , Retina/patologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/citologia , Vasos Retinianos/patologia
3.
Proc Natl Acad Sci U S A ; 116(10): 4538-4547, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787185

RESUMO

Diabetic macular edema is a major complication of diabetes resulting in loss of central vision. Although heightened vessel leakiness has been linked to glial and neuronal-derived factors, relatively little is known on the mechanisms by which mature endothelial cells exit from a quiescent state and compromise barrier function. Here we report that endothelial NOTCH1 signaling in mature diabetic retinas contributes to increased vascular permeability. By providing both human and mouse data, we show that NOTCH1 ligands JAGGED1 and DELTA LIKE-4 are up-regulated secondary to hyperglycemia and activate both canonical and rapid noncanonical NOTCH1 pathways that ultimately disrupt endothelial adherens junctions in diabetic retinas by causing dissociation of vascular endothelial-cadherin from ß-catenin. We further demonstrate that neutralization of NOTCH1 ligands prevents diabetes-induced retinal edema. Collectively, these results identify a fundamental process in diabetes-mediated vascular permeability and provide translational rational for targeting the NOTCH pathway (primarily JAGGED1) in conditions characterized by compromised vascular barrier function.


Assuntos
Permeabilidade Capilar , Retinopatia Diabética/patologia , Receptor Notch1/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/biossíntese , Ativação Enzimática , Hiperglicemia/metabolismo , Proteína Jagged-1/biossíntese , Camundongos , Óxido Nítrico/biossíntese , Vasos Retinianos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo
4.
Mol Cell ; 39(3): 468-76, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20705246

RESUMO

Disruption of adherens junctions between endothelial cells results in compromised endothelial barrier function and in altered angiogenesis. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) is essential for increased vascular permeability induced by vascular endothelial growth factor (VEGF). However, the molecular mechanisms by which NO modulates endothelial permeability remain elusive. Here, we show that, within adherens junctions, beta-catenin is a substrate for S-nitrosylation by NO. Stimulation of endothelial cells with VEGF induces S-nitrosylation of beta-catenin, which is dependent on expression and activity of eNOS. Furthermore, VEGF-induced S-nitrosylation of beta-catenin is inhibited in eNOS(-/-) mice. We identify Cys619, located within the VE-cadherin interaction site, as the major S-nitrosylation locus in response to VEGF. Inhibition of S-nitrosylation at Cys619 prevents NO-dependent dissociation of beta-catenin from VE-cadherin and disassembly of adherens junction complexes and inhibits VEGF-stimulated endothelial permeability. Thus, we identify S-nitrosylation of beta-catenin as a modulator of intercellular contacts between endothelial cells.


Assuntos
Permeabilidade Capilar/fisiologia , Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/metabolismo , Junções Aderentes/genética , Junções Aderentes/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Cisteína/genética , Cisteína/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo III/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , beta Catenina/genética
5.
Blood ; 120(16): 3371-81, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-22936663

RESUMO

Angiogenic sprouting requires that cell-cell contacts be maintained during migration of endothelial cells. Angiopoietin-1 (Ang-1) and vascular endothelial growth factor act oppositely on endothelial cell junctions. We found that Ang-1 promotes collective and directional migration and, in contrast to VEGF, induces the formation of a complex formed of atypical protein kinase C (PKC)-ζ and ß-catenin at cell-cell junctions and at the leading edge of migrating endothelial cells. This complex brings Par3, Par6, and adherens junction proteins at the front of migrating cells to locally activate Rac1 in response to Ang-1. The colocalization of PKCζ and ß-catenin at leading edge along with PKCζ-dependent stabilization of cell-cell contacts promotes directed and collective endothelial cell migration. Consistent with these results, down-regulation of PKCζ in endothelial cells alters Ang-1-induced sprouting in vitro and knockdown in developing zebrafish results in intersegmental vessel defects caused by a perturbed directionality of tip cells and by loss of cell contacts between tip and stalk cells. These results reveal that PKCζ and ß-catenin function in a complex at adherens junctions and at the leading edge of migrating endothelial cells to modulate collective and directional migration during angiogenesis.


Assuntos
Angiopoietina-1/farmacologia , Movimento Celular/fisiologia , Endotélio Vascular/metabolismo , Neovascularização Fisiológica/fisiologia , Proteína Quinase C/metabolismo , beta Catenina/metabolismo , Junções Aderentes/metabolismo , Animais , Animais Geneticamente Modificados , Aorta/citologia , Aorta/metabolismo , Células COS , Bovinos , Movimento Celular/efeitos dos fármacos , Polaridade Celular , Células Cultivadas , Chlorocebus aethiops , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Endotélio Vascular/citologia , Imunofluorescência , Junções Intercelulares/metabolismo , Microinjeções , Cicatrização , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
6.
Cells ; 12(19)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37830555

RESUMO

Cellular senescence, a state of permanent cell cycle arrest in response to endogenous and exogenous stimuli, triggers a series of gradual alterations in structure, metabolism, and function, as well as inflammatory gene expression that nurtures a low-grade proinflammatory milieu in human tissue. A growing body of evidence indicates an accumulation of senescent neurons and blood vessels in response to stress and aging in the retina. Prolonged accumulation of senescent cells and long-term activation of stress signaling responses may lead to multiple chronic diseases, tissue dysfunction, and age-related pathologies by exposing neighboring cells to the heightened pathological senescence-associated secretory phenotype (SASP). However, the ultimate impacts of cellular senescence on the retinal vasculopathies and retinal vascular development remain ill-defined. In this review, we first summarize the molecular players and fundamental mechanisms driving cellular senescence, as well as the beneficial implications of senescent cells in driving vital physiological processes such as embryogenesis, wound healing, and tissue regeneration. Then, the dual implications of senescent cells on the growth, hemostasis, and remodeling of retinal blood vessels are described to document how senescent cells contribute to both retinal vascular development and the severity of proliferative retinopathies. Finally, we discuss the two main senotherapeutic strategies-senolytics and senomorphics-that are being considered to safely interfere with the detrimental effects of cellular senescence.


Assuntos
Envelhecimento , Senescência Celular , Humanos , Envelhecimento/patologia , Retina , Vasos Retinianos , Fenótipo Secretor Associado à Senescência
7.
J Cell Sci ; 123(Pt 24): 4221-30, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21081647

RESUMO

Carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1) is an immunoglobulin-like cell surface co-receptor expressed on epithelial, hematopoietic and endothelial cells. CEACAM1 functions as an adhesion molecule, mainly binding to itself or other members of the CEA family. We and others have previously shown that CEACAM1 is crucial for in vivo vascular integrity during ischemic neo-vascularization. Here, we have deciphered the roles of CEACAM1 in normal and pathological vascularization. We have found that Ceacam1-/- mice exhibit a significant increase in basal vascular permeability related to increased basal Akt and endothelial nitric oxide synthase (eNOS) activation in primary murine lung endothelial cells (MLECs). Moreover, CEACAM1 deletion in MLECs inhibits VEGF-mediated nitric oxide (NO) production, consistent with defective VEGF-dependent in vivo permeability in Ceacam1-/- mice. In addition, Ceacam1-null mice exhibit increased permeability of tumor vasculature. Finally, we demonstrate that CEACAM1 is tyrosine-phosphorylated upon VEGF treatment in a SHP-1- and Src-dependent manner, and that the key residues of the long cytoplasmic domain of CEACAM1 are crucial for CEACAM1 phosphorylation and NO production. This data represents the first report, to our knowledge, of a functional link between CEACAM1 and the VEGFR2/Akt/eNOS-mediated vascular permeability pathway.


Assuntos
Permeabilidade Capilar , Antígeno Carcinoembrionário/metabolismo , Motivos de Aminoácidos , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Aorta/ultraestrutura , Permeabilidade Capilar/efeitos dos fármacos , Antígeno Carcinoembrionário/química , Bovinos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Pulmão/citologia , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/patologia , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo
8.
Blood ; 114(15): 3343-51, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19564638

RESUMO

Vascular endothelial growth factor (VEGF) is a potent angiogenic cytokine that also increases vascular permeability. Nitric oxide (NO) released from endothelial cells, after activation of endothelial NO synthase (eNOS), contributes to proangiogenic and permeability effects of VEGF. Angiopoietin-1 (Ang-1), via Tie2 receptors, shares many of the proangiogenic properties of VEGF on endothelial cells. However, in contrast to VEGF, Ang-1 protects blood vessels from increased plasma leakage, which contributes to their stabilization. Because eNOS-derived NO is central to increased permeability in response to VEGF, we investigated whether Ang-1 interferes with VEGF signaling to eNOS. We demonstrate that Ang-1 stimulation of endothelial cells inhibits VEGF-induced NO release and transendothelial permeability. In contrast to VEGF stimulation, Ang-1 causes a marked protein kinase C (PKC)-dependent increase in phosphorylation of eNOS on the inhibitory Thr(497). Furthermore, using pharmacologic inhibitors, overexpression studies, and small interfering RNA-mediated gene silencing, we demonstrate that atypical PKC zeta is responsible for phosphorylation of eNOS on Thr(497) in response to Ang-1. In addition, PKC zeta knockdown abrogates the capacity of Ang-1 to inhibit VEGF-induced NO release and endothelial permeability. Thus, inhibition of NO production by Ang-1, via phosphorylation of eNOS on Thr(497) by PKC zeta, is responsible, at least in part, for inhibition of VEGF-stimulated endothelial permeability by Ang-1.


Assuntos
Angiopoietina-1/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Quinase C/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Permeabilidade Capilar/genética , Bovinos , Células Endoteliais , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Fosforilação/efeitos dos fármacos , Proteína Quinase C/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
9.
J Histochem Cytochem ; 56(6): 605-14, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18319274

RESUMO

Aging and diabetes are associated with exacerbated expression of adhesion molecules. Given their importance in endothelial dysfunction and their possible involvement in the alteration of glomerular permeability occurring in diabetes, we have evaluated expression of the sialomucin-type adhesion molecule CD34 in renal glomerular cells of normal and diabetic animals at two different ages by colloidal gold immunocytochemistry and immunoblotting. CD34 labeling was mostly assigned to the plasma membranes of glomerular endothelium and mesangial processes. Podocyte membranes were also labeled, but to a lesser degree. Short- and long-term diabetes triggers a substantial increase in immunogold labeling for CD34 in renal tissues compared with young normoglycemic animals. However, the level of labeling in old diabetic and healthy control rats is similar, suggesting that the effect of diabetes and aging on CD34 expression is similar but not synergistic. Western blotting of isolated glomerular fractions corroborated immunocytochemical results. Increased expression of CD34 may reflect its involvement in the pathogenesis of glomerular alterations related to age and diabetes. Alterations present in early diabetes, resembling those occurring with age, strengthen the concept that diabetes is an accelerated form of aging.


Assuntos
Antígenos CD34/biossíntese , Diabetes Mellitus Experimental/metabolismo , Glomérulos Renais/metabolismo , Envelhecimento , Sequência de Aminoácidos , Animais , Western Blotting , Hiperglicemia/metabolismo , Imuno-Histoquímica , Glomérulos Renais/irrigação sanguínea , Masculino , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley
10.
Sci Immunol ; 3(21)2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549139

RESUMO

Obesity gives rise to metabolic complications by mechanisms that are poorly understood. Although chronic inflammatory signaling in adipose tissue is typically associated with metabolic deficiencies linked to excessive weight gain, we identified a subset of neuropilin-1 (NRP1)-expressing myeloid cells that accumulate in adipose tissue and protect against obesity and metabolic syndrome. Ablation of NRP1 in macrophages compromised lipid uptake in these cells, which reduced substrates for fatty acid ß-oxidation and shifted energy metabolism of these macrophages toward a more inflammatory glycolytic metabolism. Conditional deletion of NRP1 in LysM Cre-expressing cells leads to inadequate adipose vascularization, accelerated weight gain, and reduced insulin sensitivity even independent of weight gain. Transfer of NRP1+ hematopoietic cells improved glucose homeostasis, resulting in the reversal of a prediabetic phenotype. Our findings suggest a pivotal role for adipose tissue-resident NRP1+-expressing macrophages in driving healthy weight gain and maintaining glucose tolerance.


Assuntos
Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Neuropilina-1/metabolismo , Animais , Síndrome Metabólica/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/metabolismo
11.
J Clin Invest ; 126(8): 3006-22, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27400127

RESUMO

Diabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness in the working-age population. Impaired blood-retinal barrier function leads to macular edema that is closely associated with the deterioration of central vision. We previously demonstrated that the neuronal guidance cue netrin-1 activates a program of reparative angiogenesis in microglia within the ischemic retina. Here, we provide evidence in both vitreous humor of diabetic patients and in retina of a murine model of diabetes that netrin-1 is metabolized into a bioactive fragment corresponding to domains VI and V of the full-length molecule. In contrast to the protective effects of full-length netrin-1 on retinal microvasculature, the VI-V fragment promoted vascular permeability through the uncoordinated 5B (UNC5B) receptor. The collagenase matrix metalloprotease 9 (MMP-9), which is increased in patients with diabetic macular edema, was capable of cleaving netrin-1 into the VI-V fragment. Thus, MMP-9 may release netrin-1 fragments from the extracellular matrix and facilitate diffusion. Nonspecific inhibition of collagenases or selective inhibition of MMP-9 decreased pathological vascular permeability in a murine model of diabetic retinal edema. This study reveals that netrin-1 degradation products are capable of modulating vascular permeability, suggesting that these fragments are of potential therapeutic interest for the treatment of DR.


Assuntos
Permeabilidade Capilar , Retinopatia Diabética/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Barreira Hematorretiniana , Estudos de Casos e Controles , Diabetes Mellitus Experimental , Retinopatia Diabética/genética , Modelos Animais de Doenças , Humanos , Edema Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Pessoa de Meia-Idade , Fatores de Crescimento Neural/genética , Netrina-1 , Domínios Proteicos , Retina/metabolismo , Estreptozocina , Proteínas Supressoras de Tumor/genética
12.
Sci Transl Med ; 8(362): 362ra144, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27797960

RESUMO

Pathological angiogenesis is the hallmark of diseases such as cancer and retinopathies. Although tissue hypoxia and inflammation are recognized as central drivers of vessel growth, relatively little is known about the process that bridges the two. In a mouse model of ischemic retinopathy, we found that hypoxic regions of the retina showed only modest rates of apoptosis despite severely compromised metabolic supply. Using transcriptomic analysis and inducible loss-of-function genetics, we demonstrated that ischemic retinal cells instead engage the endoplasmic reticulum stress inositol-requiring enzyme 1α (IRE1α) pathway that, through its endoribonuclease activity, induces a state of senescence in which cells adopt a senescence-associated secretory phenotype (SASP). We also detected SASP-associated cytokines (plasminogen activator inhibitor 1, interleukin-6, interleukin-8, and vascular endothelial growth factor) in the vitreous humor of patients suffering from proliferative diabetic retinopathy. Therapeutic inhibition of the SASP through intravitreal delivery of metformin or interference with effectors of senescence (semaphorin 3A or IRE1α) in mice reduced destructive retinal neovascularization in vivo. We conclude that the SASP contributes to pathological vessel growth, with ischemic retinal cells becoming prematurely senescent and secreting inflammatory cytokines that drive paracrine senescence, exacerbate destructive angiogenesis, and hinder reparative vascular regeneration. Reversal of this process may be therapeutically beneficial.


Assuntos
Senescência Celular , Retinopatia Diabética/sangue , Neovascularização Patológica , Vasos Retinianos/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Retinopatia Diabética/fisiopatologia , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/química , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Retina/patologia , Neovascularização Retiniana , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vitrectomia
13.
J Clin Invest ; 124(11): 4807-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25271625

RESUMO

Immunological activity in the CNS is largely dependent on an innate immune response and is heightened in diseases, such as diabetic retinopathy, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. The molecular dynamics governing immune cell recruitment to sites of injury and disease in the CNS during sterile inflammation remain poorly defined. Here, we identified a subset of mononuclear phagocytes (MPs) that responds to local chemotactic cues that are conserved among central neurons, vessels, and immune cells. Patients suffering from late-stage proliferative diabetic retinopathy (PDR) had elevated vitreous semaphorin 3A (SEMA3A). Using a murine model, we found that SEMA3A acts as a potent attractant for neuropilin-1-positive (NRP-1-positive) MPs. These proangiogenic MPs were selectively recruited to sites of pathological neovascularization in response to locally produced SEMA3A as well as VEGF. NRP-1-positive MPs were essential for disease progression, as NRP-1-deficient MPs failed to enter the retina in a murine model of oxygen-induced retinopathy (OIR), a proxy for PDR. OIR mice with NRP-1-deficient MPs exhibited decreased vascular degeneration and diminished pathological preretinal neovascularization. Intravitreal administration of a NRP-1-derived trap effectively mimicked the therapeutic benefits observed in mice lacking NRP-1-expressing MPs. Our findings indicate that NRP-1 is an obligate receptor for MP chemotaxis, bridging neural ischemia to an innate immune response in neovascular retinal disease.


Assuntos
Quimiotaxia , Células Mieloides/fisiologia , Neuropilina-1/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proliferação de Células , Células Cultivadas , Corioide/imunologia , Retinopatia Diabética/imunologia , Retinopatia Diabética/metabolismo , Humanos , Imunidade Inata , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Sistema Fagocitário Mononuclear/imunologia , Neovascularização Fisiológica , Neuroimunomodulação , Semaforina-3A/metabolismo , Técnicas de Cultura de Tecidos
14.
J Biol Chem ; 282(14): 10660-9, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17303569

RESUMO

Vascular endothelial growth factor (VEGF)-stimulated nitric oxide (NO) release from endothelial cells is mediated through the activation of VEGF receptor-2 (VEGFR-2). Herein, we have attempted to determine which autophosphorylated tyrosine residue on the VEGFR-2 is essential for VEGF-mediated endothelial nitric-oxide synthase (eNOS) activation and NO production from endothelial cells. Tyrosine residues 801, 1175, and 1214 of the VEGFR-2 were mutated to phenylalanine, and the mutated receptors were analyzed for their ability to stimulate NO production. We show, both in COS-7 cells cotransfected with the VEGFR-2 mutants and eNOS and in bovine aortic endothelial cells, that the Y801F-VEGFR-2 mutant is unable to stimulate NO synthesis and eNOS activation in contrast to the wild type, Y1175F-VEGFR-2, and Y1214F-VEGFR-2. However, the Y801F mutant retains the capacity to activate phospholipase C-gamma in contrast to the Y1175F-VEGFR-2. Interestingly, the Y801F-VEGFR-2, in contrast to the wild type receptor, does not fully activate phosphatidylinositol 3-kinase or recruit the p85 subunit upon receptor activation. This results in a complete incapacity of the Y801F-VEGFR-2 to stimulate Akt activation and eNOS phosphorylation on serine 1179 in endothelial cells. In addition, constitutive activation of Akt or a phosphomimetic mutant of eNOS (S1179D) fully rescues the inability of the Y801F-VEGFR-2 to induce NO release. Finally, we generated an antibody that specifically recognizes the phosphorylated form of tyrosine 801 of the VEGFR-2 and demonstrate that this residue is actively phosphorylated in response to VEGF stimulation of endothelial cells. We thus conclude that autophosphorylation of tyrosine residue 801 of the VEGFR-2 is essential for VEGF-stimulated NO production from endothelial cells, and this is primarily accomplished via the activation of phosphatidylinositol 3-kinase and Akt signaling to eNOS.


Assuntos
Células Endoteliais/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Substituição de Aminoácidos , Animais , Aorta/citologia , Aorta/enzimologia , Células COS , Bovinos , Chlorocebus aethiops , Células Endoteliais/citologia , Ativação Enzimática/genética , Mutação de Sentido Incorreto , Óxido Nítrico Sintase Tipo III/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional/genética , Tirosina/genética , Tirosina/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA