Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Bioresour Technol ; 288: 121462, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31128542

RESUMO

The use of constructed wetlands in combination with microbial fuel cells (CW-MFC) to treat saline wastewater may enhance electricity production by increasing the ionic strength, reducing internal resistance and stimulating microbes to accelerate electron transfer. In this study, salinity did not significantly inhibit the removal of TP and COD, but TN and NH4+-N removal efficiencies during saline wastewater treatment (ST) were significantly lower than during non-saline wastewater treatment (NT). However, salinity significantly increased the power density (16.4 mW m-2 in ST and 3.9 mW m-2 in NT, a 4-fold enhancement) by increasing the electron transfer rate and reducing internal resistance (140.29â€¯Ω in ST and 415.21â€¯Ω in NT). The peptides in extracellular polymeric substances (EPS) acted as electron shuttles to promote the migration of electrons and protons in ST. From start-up to stable operation, though the microorganisms in ST were reduced in diversity relative to NT, the proportion of electrochemically active bacteria (EAB), such as Ochrobactrum, significantly increased (p < 0.05) and gradually predominated in the microbial community.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Águas Residuárias , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA