Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2319288121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527206

RESUMO

Design tactics and mechanistic studies both remain as fundamental challenges during the exploitations of earth-abundant molecular electrocatalysts for CO2 reduction, especially for the rarely studied Cr-based ones. Herein, a quaterpyridyl CrIII catalyst is found to be highly active for CO2 electroreduction to CO with 99.8% Faradaic efficiency in DMF/phenol medium. A nearly one order of magnitude higher turnover frequency (86.6 s-1) over the documented Cr-based catalysts (<10 s-1) can be achieved at an applied overpotential of only 190 mV which is generally 300 mV lower than these precedents. Such a high performance at this low driving force originates from the metal-ligand cooperativity that stabilizes the low-valent intermediates and serves as an efficient electron reservoir. Moreover, a synergy of electrochemistry, spectroelectrochemistry, electron paramagnetic resonance, and quantum chemical calculations allows to characterize the key CrII, CrI, Cr0, and CO-bound Cr0 intermediates as well as to verify the catalytic mechanism.

2.
Proc Natl Acad Sci U S A ; 120(13): e2221219120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943881

RESUMO

The design of a highly efficient system for CO2 photoreduction fully based on earth-abundant elements presents a challenge, which may be overcome by installing suitable interactions between photosensitizer and catalyst to expedite the intermolecular electron transfer. Herein, we have designed a pyrene-decorated Cu(I) complex with a rare dual emission behavior, aiming at additional π-interaction with a pyrene-appended Co(II) catalyst for visible light-driven CO2-to-CO conversion. The results of 1H NMR titration, time-resolved fluorescence/absorption spectroscopies, quantum chemical simulations, and photocatalytic experiments clearly demonstrate that the dynamic π-π interaction between sensitizer and catalyst is highly advantageous in photocatalysis by accelerating the intermolecular electron transfer rate up to 6.9 × 105 s-1, thus achieving a notable apparent quantum yield of 19% at 425 nm with near-unity selectivity. While comparable to most earth-abundant molecular systems, this value is over three times of the pyrene-free system (6.0%) and far surpassing the benchmarking Ru(II) tris(bipyridine) (0.3%) and Ir(III) tris(2-phenylpyridine) (1.4%) photosensitizers under parallel conditions.

3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35017300

RESUMO

The Fenton-like process catalyzed by metal-free materials presents one of the most promising strategies to deal with the ever-growing environmental pollution. However, to develop improved catalysts with adequate activity, complicated preparation/modification processes and harsh conditions are always needed. Herein, we proposed an ultrafast and facile strategy to convert various inefficient commercial nanocarbons into highly active catalysts by noncovalent functionalization with polyethylenimine (PEI). The modified catalysts could be in situ fabricated by direct addition of PEI aqueous solution into the nanocarbon suspensions within 30 s and without any tedious treatment. The unexpectedly high catalytic activity is even superior to that of the single-atom catalyst and could reach as high as 400 times higher than the pristine carbon material. Theoretical and experimental results reveal that PEI creates net negative charge via intermolecular charge transfer, rendering the catalyst higher persulfate activation efficiency.

4.
Proc Natl Acad Sci U S A ; 119(22): e2202913119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35605116

RESUMO

SignificanceHydrogen peroxide is a highly competitive ready-to-use product for solar energy transformation. Nevertheless, the contemporary photosynthetic systems are not efficient enough, due to severe charge recombination caused by high activation energy and binding energy of the exciton. Herein, we achieve spontaneous exciton dissociation at room temperature. Moreover, the photosynthesis of H2O2 reaches between 9,366 and 12,324 µmol·g-1 from 9 AM to 4 PM in ambient conditions, that is, sunlight irradiation, real water including fresh water and seawater, room temperature, and open air. The ultrahigh photocatalytic efficiency in ambient conditions allows the solar-to-chemical conversion in a real cost-effective and sustainable way, which represents an important step toward real applications.

5.
J Am Chem Soc ; 146(26): 17773-17783, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888951

RESUMO

The development of efficient, selective, and durable CO2 photoreduction systems presents a long-standing challenge in full aqueous solutions owing to the presence of scarce CO2 and the fierce competition against H2 evolution, which is even more challenging when noble metals are not utilized. Herein, we present the facile decorations of four phosphonic acid groups on a donor-acceptor-type organic dye to obtain a water-soluble photosensitizer (4P-DPAIPN), which succeeds the excellent photophysical and photoredox properties of its prototype, exhibiting long-lived delayed fluorescence (>10 µs) in aqueous solutions. Combining 4P-DPAIPN with a cationic cobalt porphyrin catalyst has accomplished record-high apparent quantum yields of 9.4-17.4% at 450 nm for CO2-to-CO photoconversion among the precedented systems (maximum 13%) in fully aqueous solutions. Remarkable selectivity of 82-93% and turnover number of 2700 for CO production can also be achieved with this noble-metal-free system, outperforming a benchmarking ruthenium photosensitizer and a commercial organic dye under parallel conditions. Such high performances of 4P-DPAIPN can be well maintained under real sunlight. More impressively, no significant decomposition of 4P-DPAIPN was detected during the long-term photocatalysis. Eventually, the photoinduced electron transfer pathways were proposed.

6.
J Am Chem Soc ; 146(30): 21025-21033, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39025790

RESUMO

Artificial photosynthesis represents a sustainable strategy for accessing high-value chemicals; however, the conversion efficiency is significantly limited by its difficulty in the cycle of coenzymes such as NADH. In this study, we report a series of isostructural triazine covalent organic frameworks (COFs) and explore their N-substituted microenvironment-dependent photocatalytic activity for NADH regeneration. We discovered that the rational alteration of N-heterocyclic species, which are linked to the triazine center through an imine linkage, can significantly regulate both the electron band structure and planarity of a COF layer. This results in different separation efficiencies of the photoinduced electron-hole pairs and electron transfer behavior within and between individual layers. The optimal COF catalyst herein achieves an NADH regeneration capacity of 89% within 20 min, outperforming most of the reported nanomaterial photocatalysts. Based on this, an artificial photosynthesis system is constructed for the green synthesis of a high-value compound, L-glutamate, and its conversion efficiency significantly surpasses the enzymatic approach without the NADH photocatalytic cycle. This work offers new insights into the coenzyme regeneration by means of regulating the distal heterocyclic microenvironment of a COF skeleton, holding great potential for the green photosynthesis of important chemicals.


Assuntos
Estruturas Metalorgânicas , Triazinas , Triazinas/química , Catálise , Estruturas Metalorgânicas/química , NAD/química , NAD/metabolismo , Processos Fotoquímicos , Estrutura Molecular , Coenzimas/química , Coenzimas/metabolismo , Fotossíntese
7.
J Am Chem Soc ; 146(3): 1967-1976, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38131319

RESUMO

Engineering nanotraps to immobilize fragile enzymes provides new insights into designing stable and sustainable biocatalysts. However, the trade-off between activity and stability remains a long-standing challenge due to the inevitable diffusion barrier set up by nanocarriers. Herein, we report a synergetic interfacial activation strategy by virtue of hydrogen-bonded supramolecular encapsulation. The pore wall of the nanotrap, in which the enzyme is encapsulated, is modified with methyl struts in an atomically precise position. This well-designed supramolecular pore results in a synergism of hydrogen-bonded and hydrophobic interactions with the hosted enzyme, and it can modulate the catalytic center of the enzyme into a favorable configuration with high substrate accessibility and binding capability, which shows up to a 4.4-fold reaction rate and 4.9-fold conversion enhancements compared to free enzymes. This work sheds new light on the interfacial activation of enzymes using supramolecular engineering and also showcases the feasibility of interfacial assembly to access hierarchical biocatalysts featuring high activity and stability simultaneously.


Assuntos
Hidrogênio , Catálise , Hidrogênio/química
8.
J Am Chem Soc ; 146(25): 17189-17200, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864358

RESUMO

Spatial immobilization of fragile enzymes using a nanocarrier is an efficient means to design heterogeneous biocatalysts, presenting superior stability and recyclability to pristine enzymes. An immobilized enzyme, however, usually compromises its catalytic activity because of inevasible mass transfer issues and the unfavorable conformation changes in a confined environment. Here, we describe a synergetic metal-organic framework pore-engineering strategy to trap lipase (an important hydrolase), which confers lipase-boosted stability and activity simultaneously. The hierarchically porous NU-1003, featuring interconnected mesopore and micropore channels, is precisely modified by chain-adjustable fatty acids on its mesopore channel, into which lipase is trapped. The interconnected pore structure ensures efficient communication between trapped lipase and exterior media, while the fatty acid-mediated hydrophobic pore can activate the opening conformation of lipase by interfacial interaction. Such dual pore compartmentalization and hydrophobization activation effects render the catalytic center of trapped lipase highly accessible, resulting in 1.57-fold and 2.46-fold activities as native lipase on ester hydrolysis and enantioselective catalysis. In addition, the feasibility of these heterogeneous biocatalysts for kinetic resolution of enantiomer is also validated, showing much higher efficiency than native lipase.


Assuntos
Estabilidade Enzimática , Enzimas Imobilizadas , Interações Hidrofóbicas e Hidrofílicas , Lipase , Lipase/química , Lipase/metabolismo , Porosidade , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Estruturas Metalorgânicas/química , Hidrólise , Biocatálise
9.
Anal Chem ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133550

RESUMO

Analyzing trace-level volatile organic compounds (VOCs) remains challenging due to initial sampling and preconcentration limitations. Inspired by the highly reproducible and constantly renewable electrode surface of dropping mercury electrode (DME), a contactless enrichment process was first reported by using an acoustic levitation device to trap and concentrate VOCs from gas samples onto suspended droplets, which were then directly transferred into gas chromatography-mass spectrometry (GC-MS) for real-time analysis. Compared with traditional methods injection methods, this method achieves a 46-fold increase in nicotine peak area. The detection sensitivity was enhanced significantly, attributed to the high specific surface area of the droplets and the accelerating extraction vibration. Notably, the number of identified VOCs from burning cigarettes significantly increased from 17 to 212, including 22 aromatic compounds with distinct aromas. The remarkable versatility of this method was demonstrated by effectively monitoring the dynamic changes of 16 VOCs in environmental tobacco smoke (ETS) following cigarette burning, revealing the persistence of these compounds, even after 40 min. Moreover, directly analyzing human-exhaled aerosol found that nicotine rapidly decreased while its metabolite cotinine increased, showcasing the potential for tracking human metabolism and behavior in vivo. Furthermore, multivariate data analysis of VOC profiles from six cigarette brands allowed for their visual differentiation. With versatility, sensitivity, and the ability to distinguish trace-level VOCs in realtime, this method offers promising avenues for environmental monitoring, metabolic studies, and various analytical applications.

10.
Anal Chem ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330425

RESUMO

Uranyl ions (UO22+) are recognized as important indicators for monitoring sudden nuclear accidents. However, the interferences coexisting in the complicated environmental matrices impart serious constraints on the reliability of current on-site monitoring methods. Herein, a novel ratiometric method for the highly sensitive and selective detection of UO22+ is reported based on a [Eu(diaminoterephthalic acid)] (Eu-DATP) metal-organic framework. Benefiting from the unique chemical structure of Eu-DATP, energy transfer from DATP to UO22+ was enabled, resulting in the up-regulated fluorescence of UO22+ and the simultaneous down-regulated fluorescence of Eu3+. The limit of detection reached as low as 2.7 nM, which was almost 2 orders of magnitude below the restricted limit in drinking water set by the United States Environmental Protection Agency (130 nM). The Eu-DATP probe showed excellent specificity to UO22+ over numerous interfering species, as the intrinsic emissions of UO22+ were triggered. This unprecedentedly high selectivity is especially beneficial for monitoring UO22+ in complicated environmental matrices with no need for tedious sample pretreatment, such as filtration and digestion. Then, by facilely equipping a Eu-DATP-based sampler on a drone, remotely controlled sampling and on-site analysis in real water samples were realized. The concentrations of UO22+ were determined to be from 16.5 to 23.5 nM in the river water of the Guangzhou downtown area, which was consistent with the results determined by the gold-standard inductively coupled plasma mass spectrometry. This study presents a reliable and convenient method for the on-site analysis of UO22+.

11.
Small ; : e2307976, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462955

RESUMO

Transformation of metal-organic framework (MOF) particles into thin films is urgently needed for the persistent development of well-applicable devices, and recently emerging functional-integrated hybrid frameworks. Although some flexible polymers and exclusive modification approaches have been proposed, the additive-free and widely applicable strategy has not been reported, hampering the deep investigation of the structure-performance relationship. A universal strategy for the in situ growth of large-area and continuous MOF films with controllable microstructures is introduced, through the modification of multi-scale and multi-structure substrates with poly(4-vinylpyridine) as the anchor to capture metal ions via Coulomb attraction. Based on the clarified structure-adsorption-separation mechanisms, the customized devices fabricated by in situ growth can achieve highly selective adsorption and excellently synergetic separation of various industrially relevant isomers. In addition, this strategy is also feasible for the construction of MOF-on-MOFs with varied lattice parameters. This strategy is easy to implement and will be widely applicable to the surface growth of diverse MOFs on desired substrates, and provides a new concept for developing hybrid MOFs integrating with customized functionalities.

12.
Chembiochem ; : e202400339, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801661

RESUMO

Utilizing covalent organic frameworks (COFs) as porous supports to encapsulate enzyme represents an advanced strategy for constructing COFs biocatalysts, which has inspired numerous interests across various applications. As the structural advantages including ultrastable covalent-bonded linkage, tailorable pore structure, and metal-free biocompatibility, the resultant enzyme-COFs biocatalysts showcase functional enhancement in catalytic activity, chemical stability, long-term durability, and recyclability. This Concept describes the recent advances in the methodological strategies for engineering the COFs biocatalysts, with specific emphasis on the pore entrapment and in situ encapsulation strategies. The structural advantages of the COFs hybrid biocatalysts for organic synthesis, environment- and energy-associated applications are also canvassed. Additionally, the remaining challenges and the forward-looking directions in this field are also discussed. We believe that this Concept can offer useful methodological guidance for developing active and robust COFs biocatalysts.

13.
Inorg Chem ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110766

RESUMO

Zero-dimensional organic antimony halides have attracted significant attention recently due to their structural variety, tunable optical properties, and high luminescence efficiency. Here, a new series of antimony bromide hybrid structures with seesaw [SbBr4] and pyramidal [SbBr5] geometries are reported with low band gaps and blue-light excited red emissions. Their luminescence is attributed to self-trapped excitons with a broadband emission of a large Stokes shift. Their photoluminescence signal is sensitive to water molecules, with a reversible positive correlation in a relative humidity range of 30-90%, enabling them as potential materials for real-time, self-consistent humidity sensors.

14.
Inorg Chem ; 63(20): 9326-9331, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38703124

RESUMO

Incorporating a functional unit into the multidimensional coordination polymer skeleton is an efficient way to improve the stability of materials and expand their application. In this paper, anionic copper iodide inorganic functional modules are incorporated into one-dimensional extended chains by using a unique bidentate cationic organic ligand. Benefiting from the ionic extended structure, the resulting hybrid possesses a remarkable stability with a decomposition temperature as high as 300 °C. Meanwhile, the hybrid material exhibits intrinsic greenish white-light emission with a high photoluminescent quantum yield of 70%. The emission was investigated by temperature-dependent emission spectra, which proved to be the result of the synergistic effect of two energy states. The novel synthetic strategy provides an efficient route for the development of functional organic metal halides.

15.
Environ Sci Technol ; 58(27): 11869-11886, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38940189

RESUMO

Developing efficient technologies to eliminate or degrade contaminants is paramount for environmental protection. Biocatalytic decontamination offers distinct advantages in terms of selectivity and efficiency; however, it still remains challenging when applied in complex environmental matrices. The main challenge originates from the instability and difficult-to-separate attributes of fragile enzymes, which also results in issues of compromised activity, poor reusability, low cost-effectiveness, etc. One viable solution to harness biocatalysis in complex environments is known as enzyme immobilization, where a flexible enzyme is tightly fixed in a solid carrier. In the case where a reticular crystal is utilized as the support, it is feasible to engineer next-generation biohybrid catalysts functional in complicated environmental media. This can be interpreted by three aspects: (1) the highly crystalline skeleton can shield the immobilized enzyme against external stressors. (2) The porous network ensures the high accessibility of the interior enzyme for catalytic decontamination. And (3) the adjustable and unambiguous structure of the reticular framework favors in-depth understanding of the interfacial interaction between the framework and enzyme, which can in turn guide us in designing highly active biocomposites. This Review aims to introduce this emerging biocatalysis technology for environmental decontamination involving pollutant degradation and greenhouse gas (carbon dioxide) conversion, with emphasis on the enzyme immobilization protocols and diverse catalysis principles including single enzyme catalysis, catalysis involving enzyme cascades, and photoenzyme-coupled catalysis. Additionally, the remaining challenges and forward-looking directions in this field are discussed. We believe that this Review may offer a useful biocatalytic technology to contribute to environmental decontamination in a green and sustainable manner and will inspire more researchers at the intersection of the environment science, biochemistry, and materials science communities to co-solve environmental problems.


Assuntos
Enzimas Imobilizadas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Porosidade , Biocatálise , Poluentes Ambientais/química
16.
Environ Sci Technol ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321847

RESUMO

The widespread existence of liquid crystal monomers (LCMs) in various environmental matrices has been demonstrated, yet studies on the toxicological effects of LCMs are considerably scarce and are urgently needed to be conducted to assess the adverse impacts on ecology and human health. Here, we conducted a bacteriological study on two representative human commensal bacteria, Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis), to investigate the effect of LCMs at human-relevant dosage and maximum environmental concentration on growth, metabolome, enzymatic activity, and mRNA expression. Microbial growth results exhibited that the highest inhibition ratio of LCMs on S. epidermidis reached 33.6% in our set concentration range, while the corresponding data on E. coli was only 14.3%. Additionally, LCMs showed more dose-dependent toxicity to S. epidermidis rather than E. coli. A novel in vivo solid-phase microextraction (SPME) fiber was applied to capture the in vivo metabolites of microorganisms. In vivo metabolomic analyses revealed that dysregulated fatty acid metabolism-related products of both bacteria accounted for >50% of the total number of differential substances, and the results also showed the species-specific and concentration-dependent metabolic dysregulation in LCM-exposed bacteria. The determination of enzymatic activity and mRNA relative expression levels related to oxidative stress confirmed our speculation that the adverse effects were related to the oxidative metabolism of fatty acids. This study complements the gaps in toxicity data for LCMs against bacteria and provides a new and important insight regarding metabolic dysregulation induced by environmental LCMs in human commensal bacteria.

17.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33853952

RESUMO

Photosynthesis of hydrogen peroxide (H2O2) in ambient conditions remains neither cost effective nor environmentally friendly enough because of the rapid charge recombination. Here, a photocatalytic rate of as high as 114 µmol⋅g-1⋅h-1 for the production of H2O2 in pure water and open air is achieved by using a Z-scheme heterojunction, which outperforms almost all reported photocatalysts under the same conditions. An extensive study at the atomic level demonstrates that Z-scheme electron transfer is realized by improving the photoresponse of the oxidation semiconductor under visible light, when the difference between the Fermi levels of the two constituent semiconductors is not sufficiently large. Moreover, it is verified that a type II electron transfer pathway can be converted to the desired Z-scheme pathway by tuning the excitation wavelengths. This study demonstrates a feasible strategy for developing efficient Z-scheme photocatalysts by regulating photoresponses.

18.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34750272

RESUMO

Artificial photosynthesis in ambient conditions is much less efficient than the solar-to-biomass conversion (SBC) processes in nature. Here, we successfully mimic the NADP-mediated photosynthetic processes in green plants by introducing redox moieties as the electron acceptors in the present conjugated polymeric photocatalyst. The current artificial process substantially promotes the charge carrier separation efficiency and the oxygen reduction efficiency, achieving a photosynthesis rate for converting Earth-abundant water and oxygen in air into hydrogen peroxide as high as 909 µmol⋅g-1⋅h-1 and a solar-to-chemical conversion (SCC) efficiency up to 0.26%. The SCC efficiency is more than two times higher than the average SBC efficiency in nature (0.1%) and the highest value under ambient conditions. This study presents a strategy for efficient SCC in the future.


Assuntos
Fotossíntese/fisiologia , Biomassa , Biomimética/métodos , Catálise , Peróxido de Hidrogênio/química , NADP , Oxirredução , Oxigênio/química , Processos Fotoquímicos , Polímeros/química , Energia Solar , Luz Solar , Água/química
19.
Angew Chem Int Ed Engl ; : e202412279, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056300

RESUMO

Diversifying the connecting junctions will be feasible for the controllable collaboration of metal organic frameworks (MOFs) and covalent organic frameworks (COFs) to rationally design multifunction-integrated heterostructures with enhanced performance, yet it is in the nascent stage. Herein, by intelligently exploiting the polymerization of vinyl group, C-C bond is innovatively introduced to construct the core-shell MOF@COF heterostructures with adjustable shell thickness and rare interpenetrated structure. The unique structure endows prepared C-C-linked MIL-68@COF-Vs with more superior visible-light harvesting and photogenerated carrier separation capability, leading to significantly higher photocatalytic activity and faster degradation rate than pristine MIL-68-C=Cs, COF-V, and imine-linked MIL-68-NH2@COF-V. Further, the customized MIL-68@COF-V is in-situ grown as reusable films with significantly boosted performance under ambient condition, which realize the highly efficient degradation of tetracycline within 15 min (96.5%), rhodamine 6G within 25 min (97.6%), and phenol within 40 min (95.3%) by solar drive. This work exhibits the distinctive advantages of C-C junction in the MOF@COF construction, and highlights the application prospect of rational-designed heterostructure in the treatment of persistent organic pollutants.

20.
Angew Chem Int Ed Engl ; 63(8): e202319876, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38183367

RESUMO

Utilizing covalent organic framework (COF) as a hypotoxic and porous scaffold to encapsulate enzyme (enzyme@COF) has inspired numerous interests at the intersection of chemistry, materials, and biological science. In this study, we report a convenient scheme for one-step, aqueous-phase synthesis of highly crystalline enzyme@COF biocatalysts. This facile approach relies on an ionic liquid (2 µL of imidazolium ionic liquid)-mediated dynamic polymerization mechanism, which can facilitate the in situ assembly of enzyme@COF under mild conditions. This green strategy is adaptive to synthesize different biocatalysts with highly crystalline COF "exoskeleton", as well evidenced by the low-dose cryo-EM and other characterizations. Attributing to the rigorous sieving effect of crystalline COF pore, the hosted lipase shows non-native selectivity for aliphatic acid hydrolysis. In addition, the highly crystalline linkage affords COF "exoskeleton" with higher photocatalytic activity for in situ production of H2 O2 , enabling us to construct a self-cascading photo-enzyme coupled reactor for pollutants degradation, with a 2.63-fold degradation rate as the poorly crystalline photo-enzyme reactor. This work showcases the great potentials of employing green and trace amounts of ionic liquid for one-step synthesis of crystalline enzyme@COF biocatalysts, and emphasizes the feasibility of diversifying enzyme functions by integrating the reticular chemistry of a COF.


Assuntos
Disciplinas das Ciências Biológicas , Líquidos Iônicos , Estruturas Metalorgânicas , Polimerização , Lipase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA