Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(10): e2109329119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35245171

RESUMO

SignificanceTalin is a mechanosensitive adaptor protein that links integrins to the actin cytoskeleton at cell-extracellular matrix adhesions. Although the C-terminal actin-binding domain ABS3 of talin is required for function, it binds weakly to actin in solution. We show that ABS3 binds actin strongly only when subjected to mechanical forces comparable to those generated by the cytoskeleton. Moreover, the interaction between ABS3 and actin depends strongly on the direction of force in a manner predicted to organize actin to facilitate adhesion growth and efficient cytoskeletal force generation. These characteristics can explain how force sensing by talin helps to nucleate adhesions precisely when and where they are required to transmit force between the cytoskeleton and the extracellular matrix.


Assuntos
Actinas/química , Talina/química , Actinas/genética , Actinas/metabolismo , Animais , Humanos , Ligação Proteica , Domínios Proteicos , Talina/genética , Talina/metabolismo
2.
J Neurosci ; 33(30): 12218-28, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23884930

RESUMO

The neural mechanisms that support the late postnatal development of spatial navigation are currently unknown. We investigated this in rats and found that an increase in the duration of AMPAR-mediated synaptic responses in the hippocampus was related to the emergence of spatial navigation. More specifically, spontaneous alternation rate, a behavioral indicator of hippocampal integrity, increased at the end of the third postnatal week in association with increases in AMPAR response duration at SC-CA1 synapses and synaptically driven postsynaptic discharge of CA1 pyramidal neurons. Pharmacological prolongation of glutamatergic synaptic transmission in juveniles increased the spontaneous alternation rate and CA1 postsynaptic discharge and reduced the threshold for the induction of activity-dependent synaptic plasticity at SC-CA1 synapses. A decrease in GluA1 and increases in GluA3 subunit and transmembrane AMPAR regulatory protein (TARP) expression at the end of the third postnatal week provide a molecular explanation for the increase in AMPAR response duration and reduced efficacy of AMPAR modulators with increasing age. A shift in the composition of AMPARs and increased association with AMPAR protein complex accessory proteins at the end of the third postnatal week likely "turns on" the hippocampus by increasing AMPAR response duration and postsynaptic excitability and reducing the threshold for activity-dependent synaptic potentiation.


Assuntos
Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/fisiologia , Aprendizagem em Labirinto/fisiologia , Receptores de AMPA/fisiologia , Percepção Espacial/fisiologia , Fatores Etários , Animais , Canais de Cálcio/fisiologia , Eletrofisiologia , Potenciais Evocados/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Plasticidade Neuronal/fisiologia , Técnicas de Cultura de Órgãos , Oxazinas/farmacologia , Ratos , Ratos Long-Evans , Receptores de AMPA/agonistas , Sinapses/fisiologia
3.
Mol Biol Cell ; 28(14): 1959-1974, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592635

RESUMO

The ability of cells to impart forces and deformations on their surroundings underlies cell migration and extracellular matrix (ECM) remodeling and is thus an essential aspect of complex, metazoan life. Previous work has resulted in a refined understanding, commonly termed the molecular clutch model, of how cells adhering to flat surfaces such as a microscope coverslip transmit cytoskeletally generated forces to their surroundings. Comparatively less is known about how cells adhere to and exert forces in soft, three-dimensional (3D), and structurally heterogeneous ECM environments such as occur in vivo. We used time-lapse 3D imaging and quantitative image analysis to determine how the actin cytoskeleton is mechanically coupled to the surrounding matrix for primary dermal fibroblasts embedded in a 3D fibrin matrix. Under these circumstances, the cytoskeletal architecture is dominated by contractile actin bundles attached at their ends to large, stable, integrin-based adhesions. Time-lapse imaging reveals that α-actinin-1 puncta within actomyosin bundles move more quickly than the paxillin-rich adhesion plaques, which in turn move more quickly than the local matrix, an observation reminiscent of the molecular clutch model. However, closer examination did not reveal a continuous rearward flow of the actin cytoskeleton over slower moving adhesions. Instead, we found that a subset of stress fibers continuously elongated at their attachment points to integrin adhesions, providing stable, yet structurally dynamic coupling to the ECM. Analytical modeling and numerical simulation provide a plausible physical explanation for this result and support a picture in which cells respond to the effective stiffness of local matrix attachment points. The resulting dynamic equilibrium can explain how cells maintain stable, contractile connections to discrete points within ECM during cell migration, and provides a plausible means by which fibroblasts contract provisional matrices during wound healing.


Assuntos
Adesões Focais/metabolismo , Adesões Focais/fisiologia , Fibras de Estresse/fisiologia , Citoesqueleto de Actina/metabolismo , Actinina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Fenômenos Biomecânicos/fisiologia , Adesão Celular , Movimento Celular , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Fibroblastos/metabolismo , Humanos , Integrinas/metabolismo , Paxilina/metabolismo , Fibras de Estresse/metabolismo , Imagem com Lapso de Tempo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA