RESUMO
Specialized pro-resolving lipid mediators (SPMs), derived from polyunsaturated fatty acids are important mediators in the resolution of inflammation. Recent studies have focused on the effects of SPMs in cardiovascular health and diseases. However, little is known about the effect SPMs on human vascular tone. Therefore, in this study it is aimed to investigate the effect of various SPMs including resolvin D- and E-series, maresin-1 (MaR1) and lipoxin-A4 (LxA4) on the vascular tone of human isolated saphenous vein (SV) preparations under inflammatory conditions. In addition, we aimed to evaluate the effects of SPMs on the release of pro-inflammatory mediators, monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF- α) from human SV. Pretreatment of isolated of human SV with resolvin E1 (RvE1), resolvin D1 (RvD1) and MaR1 (100 nM, 18 h) significantly reduced the contractile responses to thromboxane A2 mimetic, U46619 whereas pretreatment with LxA4 and RvD2 (100 nM, 18 h) had no significant effect on the vascular tone of SV. Moreover, RvE1, RvD1 and MaR1 but not LxA4 and RvD2 (100 nM, 18 h) pretreatment diminished the release of MCP-1 and TNF-α from SV. In conclusion, our findings suggest that pre-treatment with RvE1, RvD1, and MaR1 could have potential benefits in decreasing graft vasospasm and vascular inflammation in SV.
Assuntos
Ácidos Docosa-Hexaenoicos , Veia Safena , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação , Fator de Necrose Tumoral alfa/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Quimiocina CCL2 , Mediadores da InflamaçãoRESUMO
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Assuntos
Receptores de Prostaglandina E/metabolismo , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Dinoprostona/imunologia , Dinoprostona/metabolismo , Epoprostenol/imunologia , Epoprostenol/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Polimorfismo de Nucleotídeo Único , Multimerização Proteica , Ratos , Receptores de Prostaglandina E/química , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E/imunologia , Especificidade da EspécieRESUMO
Saphenous vein (SV) is one of the most widely used graft material in patients undergoing coronary artery bypass graft surgery (CABG). Thromboxane A2 (TXA2) is implicated in graft failure by inducing vasoconstriction and platelet aggregation. The aim of this study is to investigate the mechanism involved in TXA2-induced vasoconstriction in human SV. The role of different inhibitors and blockers on U46619 (TXA2-mimetic)-induced vasoconstriction is investigated by using an isolated organ bath system. Relaxation responses to several mediators are evaluated in SV pre-contracted with U46619 and compared with those pre-contracted with phenylephrine. Our results demonstrate that U46619-induced contraction is completely blocked by myosin light chain kinase inhibitor ML-9 or TP receptor antagonist BAY u3405. Furthermore, U46619-induced contraction is partially inhibited by phospholipase C inhibitor U73122, protein kinase C inhibitor calphostin C, Rho-kinase inhibitor Y-27632, L-type calcium channel blocker nifedipine, store-operated channel inhibitor SKF96365 or removal of extracellular calcium. Relaxation responses to NO donor (sodium nitroprusside), guanylate cyclase (GC) stimulator (riociguat), phosphodiesterase (PDE) inhibitors (sildenafil, IBMX), adenylate cyclase (AC) activator (forskolin) and acetylcholine (ACh) are markedly reduced when U46619 is used as a pre-contraction agent. Our results demonstrate that influx of extracellular Ca2+ (through L-type calcium channels and store-operated calcium channels) and intracellular Ca2+ release together with Ca2+ sensitization (through Rho-kinase activation) are necessary components for TXA2-induced vasoconstriction in SV. Moreover, more pronounced decrease in vasorelaxation induced by several mediators (SNP, riociguat, sildenafil, IBMX, forskolin, and ACh) in the presence of U46619 when compared with phenylephrine suggests that there is a crosstalk between the TP receptor signaling pathway and PDE, AC, GC enzymes. We believe that the investigation of mechanism of the TXA2-induced vasoconstriction in SV will provide additional information for the prevention of SV graft failure.
Assuntos
Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Veia Safena/fisiologia , Vasoconstrição , Humanos , Masculino , Veia Safena/metabolismo , Tromboxano A2/metabolismo , VasodilataçãoRESUMO
Pulmonary hypertension (PH) is characterized by an elevation of mean pulmonary artery pressure and it is classified into five groups. Among these groups, PH Group-III is defined as PH due to lung disease or hypoxia. Prostacyclin (PGI2) analogues (iloprost, treprostinil) and endothelin-1 (ET-1) receptor antagonists (ERA) (used alone or in combination) are therapies used for treating PH. The mechanisms underlying the positive/negative effects of combination treatment are not well documented, and in this study, we tested the hypothesis that the combination of a PGI2 analogue (iloprost, treprostinil) and an ERA may be more effective than either drug alone to treat vasculopathies observed in PH Group-III patients. Using Western blotting, ETA and ETB receptor expression were determined in human pulmonary artery (HPA) preparations derived from control and PH Group-III patients, and the physiologic impact of altered expression ratios was assessed by measuring ET-1 induced contraction of ex vivo HPA and human pulmonary veins (HPV) in an isolated organ bath system. In addition, the effects of single agent or combination treatments with a PGI2 analogue and an ERA on ET-1 release and HPA smooth muscle cells (hPASMCs) proliferation were determined by ELISA and MTT techniques, respectively. Our results indicate that the increased ETA/ETB receptor expression ratio in HPA derived from PH Group-III patients is primarily governed by a greatly depressed ETB receptor expression. However, contractions induced by ET-1 are not impacted in HPA and HPV derived from PH Group-III patients as compared to controls. Also, we found that the combination of an ETA receptor antagonist (BQ123) with iloprost provides greater inhibition of hPASMCs proliferation (-48±14% control; -32±06% PH) than either agent alone. Of note, while the ETB receptor antagonist (BQ788) increases ET-1 production from PH Group-III patients' preparations (HPA, parenchyma), even under these more proliferative conditions, iloprost and treprostinil are still effective to inhibit hPASMCs proliferation (-22/-24%). Our findings may provide new insights for the treatment of PH Group-III by combining a PGI2 analogue and a selective ETA receptor antagonist.
Assuntos
Endotelina-1/metabolismo , Epoprostenol/metabolismo , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Transdução de Sinais , Idoso , Endotelina-1/farmacologia , Epoprostenol/farmacologia , Feminino , Humanos , Hipertensão Pulmonar/patologia , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Veias Pulmonares/metabolismo , Veias Pulmonares/patologia , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismoRESUMO
BACKGROUND: Cardiovascular effects of omega-3 polyunsaturated fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been widely reported. However, there are limited studies concerning their effects on human blood vessels. Therefore, the aim of this study was to investigate the direct vascular effects of EPA and DHA on the human saphenous vein (SV) precontracted with either prostaglandin F2α (PGF2α), or thromboxane A2 analogue (U46619), or norepinephrine (NE). Moreover, we aimed to investigate the protein expression of free fatty acid receptor 4 (FFAR4) in human SV. METHODS: Pretreatment of human SV rings with EPA and DHA (100 µM, 30 min) was tested on vascular reactivity induced by PGF2α (10 nM to 5 µM), NE (10 nM to 100 µM), and U46619 (1 nM to 100 nM). In addition, direct relaxant effects of EPA/DHA (1-100 µM) were tested in human SV rings precontracted by PGF2α, NE, and U46619. Furthermore, the involvement of potassium channels on their vascular effects was investigated in the presence of the nonselective K+ channel inhibitor tetraethylammonium chloride. RESULTS: Pretreatment with EPA and DHA resulted in a significant decrease in vascular reactivity induced by U46619 and PGF2α compared to NE. In the presence of TEA, the relaxant effects of EPA and DHA were significantly decreased in SV preparations precontracted by U46619 and PGF2α for DHA. Furthermore, FFAR-4 protein was expressed in tissue extracts of human SV. CONCLUSIONS: Our study demonstrates that both EPA and DHA reduce the increased vascular tone elicited by contractile agents on the human SV and that the direct vasorelaxant effect is likely to involve potassium channels.
Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Veia Safena/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Canais de Potássio/agonistas , Canais de Potássio/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismoRESUMO
Dietary intake of omega-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has been reported to have beneficial cardiovascular effects. However, little is known about the effect of EPA and DHA on human vascular tone. Therefore, the aim of this study is to evaluate the effect of EPA and DHA on vascular tone of the human saphenous vein (SV) obtained from patients undergoing coronary bypass operation under normal and inflammatory conditions. Moreover, we aimed to investigate the effect of EPA and DHA on the release of inflammatory mediators from SV. Pretreatment of SV with EPA and DHA (100µM, 18h) decreased the contractile response of SV to norepinephrine (NE) under normal and inflammatory conditions. Moreover, EPA and DHA pretreatment diminished increased Monocyte Chemoattractant Protein-1 (MCP-1) and Tumor Necrosis Factor-alpha (TNF-α) release from SV under inflammatory conditions. In conclusion, our results suggest that EPA and DHA pretreatment may be beneficial to counteract graft vasospasm and vascular inflammation in SV which are important factors in graft failure development. Therefore, dietary intake of EPA and DHA may have potential clinical applications in improving coronary bypass graft patency.
Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Veia Safena/efeitos dos fármacos , Veia Safena/fisiologia , Idoso , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Feminino , Humanos , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Vasodilatação/efeitos dos fármacosRESUMO
Prostacyclin (PGI2) mimetics (iloprost, treprostinil) are potent vasodilators (primarily via IP-receptor activation) and major therapeutic interventions for pulmonary hypertension (PH). Increased plasma levels of endothelin (ET-1), thromboxane (TxA2) and catecholamines have been demonstrated from patients with PH. In this study, we aimed to compare relaxant effects of iloprost and treprostinil on human (HPA) and rat pulmonary arteries precontracted with either ET-1, thromboxane (U46619) or an α-adrenergic receptor agonist (Norepinephrine, NE or phenylephrine, PE). Treprostinil and iloprost induced vasorelaxation of HPA precontracted with NE, ET-1 or U46619. We obtained greater relaxation response and sensitivity to treprostinil when ET-1 or U46619 were used to induce the precontraction in comparison to NE. In contrast, iloprost showed less relaxation response and sensitivity in HPA precontracted with U46619 versus NE. In the rat, treprostinil and iloprost induced vasorelaxation of pulmonary arteries precontracted with PE and U46619 but minimally with ET-1. However, in rat pulmonary arteries, PE-induced precontractions were comparatively low amplitude. Our study showed that the ex vivo relaxation or sensitivity of pulmonary arteries induced by PGI2 mimetics is highly dependent on both the pre-contraction agent and the species. To best extrapolate to effects on human tissue, our results suggest that U46619 is the appropriate contractile agent for assessing the relaxant effect of PGI2 mimetics in rat pulmonary arteries. Finally we suggest that in PH patients with high plasma concentration of TxA2, treprostinil (not iloprost) would be a preferential treatment. On the other hand, if the ET-1 plasmatic level is high, either treprostinil or iloprost will be effective.
Assuntos
Epoprostenol/análogos & derivados , Iloprosta/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Epoprostenol/farmacologia , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
High levels of fructose in the diet results in metabolic abnormalities and vascular disorders. In this study, the effect of resveratrol (RES) on vascular relaxation and contraction responses was examined in the aorta of high-fructose (HFr)-fed rats. mRNA expressions of aortic sirtuin 1 (SIRT1), GLUT5, and aldolase B were also investigated. Rats were given fructose (30%) and (or) RES (50 mg · L(-1)) in their drinking water for 8 weeks. In the HFr-fed rats, plasma levels of arginine and the ratio of arginine:asymmetric dimethylarginine (ADMA) decreased, whereas leptin levels increased. Decreased relaxation and increased contractile responses were detected in aortic rings. However, the aortic expressions of SIRT1, GLUT5, and aldolase B remained unchanged. RES treatment restored HFr-induced vascular dysfunction without improvements in insulin resistance. Treatment of HFr-fed rats with RES increased plasma levels of arginine and the L-arginine:ADMA ratio, and decreased plasma levels of leptin. RES increased SIRT1 expression, but decreased the expression of GLUT5 and aldolase B in aortas from HFr-fed rats. These results suggest that RES contributes to the restoration of HFr-induced vascular dysfunction in rats, at least in part, by up-regulation of SIRT 1 and down-regulation of GLUT5 and aldolase B in the aorta. Moreover, RES may have a positive influence on vasculature by partly restoring the plasma arginine:ADMA ratio and leptin levels.
Assuntos
Antioxidantes/farmacologia , Aorta Torácica/efeitos dos fármacos , Frutose/administração & dosagem , Estilbenos/farmacologia , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Arginina/análogos & derivados , Arginina/sangue , Frutose/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Insulina/sangue , Leptina/metabolismo , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , RNA Mensageiro/metabolismo , Ratos Wistar , Resveratrol , Sirtuína 1/genética , Sirtuína 1/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacosRESUMO
Perivascular adipose tissue (PVAT) surrounds most vessels and has now been recognized as a regulator of vascular functions. This effect of PVAT has been mostly demonstrated in vessels obtained from rats and mice. Thus, the aim of this study was to investigate anti-contractile effect of PVAT surrounding human coronary bypass grafts such as saphenous vein (SV) and internal mammary artery (IMA). Moreover, we aimed to determine the involvement of prostanoids in the anticontractile effect of PVAT. Human SV and IMA preparations were set up in an organ bath. The presence of PVAT in SV and IMA preparations significantly attenuated the contractile response to noradrenaline (NA). Preincubation with indomethacin, a cyclooxygenase inhibitor, increased NA contraction in SV preparations with PVAT. This effect was not observed in IMA preparation with PVAT incubated with indomethacin. The lower measurements of prostaglandin E2 (PGE2) released from PVAT surrounding IMA versus SV supported these effects. In conclusion, our results show that PVAT of SV could attenuate NA-induced contraction by releasing both PGE2 and prostacyclin (PGI2). In contrast to SV, PVAT of IMA exerts its anti-contractile effect independently from prostanoids. These observations suggest that retaining PVAT in human SV and IMA preparations may have potential clinical implications to improve coronary bypass graft patency.
Assuntos
Tecido Adiposo Branco/metabolismo , Dinoprostona/fisiologia , Epoprostenol/fisiologia , Artéria Torácica Interna/fisiologia , Veia Safena/fisiologia , Idoso , Dinoprostona/farmacologia , Epoprostenol/farmacologia , Feminino , Humanos , Indometacina/farmacologia , Concentração Inibidora 50 , Masculino , Artéria Torácica Interna/efeitos dos fármacos , Pessoa de Meia-Idade , Contração Muscular , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Norepinefrina/farmacologia , Veia Safena/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Vasoconstrição , Vasoconstritores/farmacologiaRESUMO
Adipose tissue has been established as an endocrine organ that plays an important role in maintaining metabolic homeostasis. Adipose tissue releases several bioactive molecules called adipokines. Inflammation, dysregulation of adipokine synthesis, and secretion are observed in obesity and related diseases and cause adipose tissue dysfunction. Prostanoids, belonging to the eicosanoid family of lipid mediators, can be synthesized in adipose tissue and play a critical role in adipose tissue biology. In this review, we summarized the current knowledge regarding the interaction of prostanoids with adipokines, the expression of prostanoid receptors, and prostanoid synthase enzymes in adipose tissues in health and disease. Furthermore, the involvement of prostanoids in the physiological function or dysfunction of adipose tissue including inflammation, lipolysis, adipogenesis, thermogenesis, browning of adipocytes, and vascular tone regulation was also discussed by examining studies using pharmacological approaches or genetically modified animals for prostanoid receptors/synthase enzymes. Overall, the present review provides a perspective on the evidence from literature regarding the biological effects of prostanoids in adipose tissue. Among prostanoids, prostaglandin E2 (PGE2) is prominent in regards to its substantial role in both adipose tissue physiology and pathophysiology. Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.
Assuntos
Tecido Adiposo , Prostaglandinas , Animais , Prostaglandinas/metabolismo , Tecido Adiposo/metabolismo , Adipocinas/metabolismo , Obesidade/metabolismo , Inflamação/metabolismo , Dinoprostona/metabolismo , Eicosanoides/metabolismoRESUMO
BACKGROUND: Vasospasm and atherosclerosis due to low endothelial capacity are the most important causes of coronary artery bypass graft failure observed in internal mammary artery (IMA) and saphenous vein (SV). Vasospasm can be mimicked in in-vitro studies by inducing vasoconstriction of graft materials. In the present study, we aimed to compare the vascular contraction induced by several spasmogens including prostaglandin E2 (PGE
Assuntos
Arginina/análogos & derivados , Ponte de Artéria Coronária , Artéria Torácica Interna/metabolismo , Veia Safena/metabolismo , Vasoconstrição , Arginina/metabolismo , Biomarcadores/metabolismo , Humanos , Técnicas In Vitro , Artéria Torácica Interna/efeitos dos fármacos , Veia Safena/efeitos dos fármacos , Grau de Desobstrução Vascular , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologiaRESUMO
The association between matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinases (TIMPs) and obesity as well as obesity-related disease including metabolic syndrome is not fully explored. Our aims are that: (i) to evaluate the plasma levels of MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1, TIMP-2 and their ratios in non-obese people, overweight and obese people with or without metabolic syndrome, (ii) to investigate correlations between MMPs or TIMPs levels and several anthropometric parameters, blood pressure, endothelial function. Anthropometric and biochemical parameters were determined in 479 randomly selected participants, subdividing according to body mass index (BMI) and metabolic syndrome status. Plasma MMPs and TIMPs levels were measured. The assessment of endothelial function was characterized in people with obesity, overweight and non-obese, using laser Doppler Flowmetry. Obese people have elevated MMP-1, MMP-2, TIMP-1, TIMP-2 levels and decreased MMP-3/TIMP-1 and MMP-9/TIMP-1 ratios compared with non-obese people. MMP-1 levels and MMP-1/TIMP-1 ratio were positively correlated with BMI and waist circumference (WC) while MMP-2 levels were negatively correlated with BMI and WC values in obese people. MMP-3 levels and MMP-3/TIMP-1 ratio were positively correlated with systolic blood pressure (SBP) or diastolic blood pressure (DBP) in obese and metabolic syndrome people. Additionally, MMP-9 levels and MMP-9/TIMP-1 ratio were negatively correlated with endothelium-dependent response in obese and metabolic syndrome people. MMP-1, MMP-2, TIMP-1, TIMP-2 levels were increased in obese subjects. Significant correlations between anthropometric parameters and MMP-1 as well as MMP-1/TIMP-1 ratio supported these results. MMP-3 and -9 levels as well as their ratios with TIMP-1 were associated with blood pressure and endothelial-dependent response, respectively. In conclusion, our results demonstrated that MMP-1, MMP-3 and MMP-9 levels were correlated with several obesity-related parameters including BMI, WC, blood pressure and endothelial-dependent response. Our findings will hopefully provide new aspects for the use of MMPs and TIMPs as clinical biomarkers in obesity-related cardiovascular diseases such as metabolic syndrome and hypertension. The lack of measure of MMPs activity in plasma and relevant organs/tissues in obesity and metabolic syndrome is considered as a limitation in this report.
Assuntos
Pressão Sanguínea , Índice de Massa Corporal , Endotélio Vascular/fisiopatologia , Inibidores de Metaloproteinases de Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Obesidade/patologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Obesidade/metabolismoRESUMO
AIMS: Thromboxane (TxA2) is synthesized from arachidonic acid (AA) via thromboxane synthase (TxS) enzyme and induces vasoconstriction via TP receptor. Our aim is to compare the effects of aspirin, TxS inhibitor and TP receptor antagonist on vascular reactivity of bypass grafts (saphenous vein and internal mammary artery). MAIN METHODS: Using isolated organ bath, saphenous vein and internal mammary artery preparations were incubated with TP receptor antagonist, TxS inhibitor, aspirin, IP or EP4 receptor antagonist. Then prostaglandin (PG)E2, PGF2α, phenylephrine and AA were administered in concentration-dependent manner. The expression of prostanoid receptor and PGI2 synthase (PGIS) enzyme was determined by Western Blot. KEY FINDINGS: TP receptor antagonist inhibited the contraction induced by PGE2, PGF2α, and AA but not that induced by phenylephrine in both types of vessels. Aspirin increased phenylephrine-induced contraction only in internal mammary artery and decreased AA-induced contraction in saphenous vein. TxS inhibitor decreased both PGE2 and AA-induced contraction in both types of vessels. This decrease was reversed by co-incubation of TxS inhibitor and IP/EP4 receptor antagonists. The expressions of EP3 receptor and PGIS enzyme were greater in internal mammary artery compared to saphenous vein while IP and TP receptors expressed at similar levels. SIGNIFICANCE: TP receptor antagonist and TxS inhibitor are more effective to reduce contraction induced by different spasmogens in comparison to aspirin. Our results suggest that TP receptor antagonist and TxS inhibitor might have an advantage over aspirin due to their preventive effect on increased vascular reactivity observed in post-operative period of coronary artery bypass grafting.
Assuntos
Artéria Torácica Interna/efeitos dos fármacos , Veia Safena/efeitos dos fármacos , Ácido Araquidônico/metabolismo , Aspirina/farmacologia , Benzofuranos/farmacologia , Carbazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Masculino , Artéria Torácica Interna/metabolismo , Músculo Liso Vascular/metabolismo , Fenilefrina/farmacologia , Receptores de Prostaglandina/metabolismo , Receptores de Tromboxanos/antagonistas & inibidores , Receptores de Tromboxanos/efeitos dos fármacos , Receptores de Tromboxanos/metabolismo , Veia Safena/metabolismo , Sulfonamidas/farmacologia , Tromboxano A2/farmacologia , Tromboxano-A Sintase/antagonistas & inibidores , Tromboxano-A Sintase/efeitos dos fármacos , Tromboxano-A Sintase/metabolismo , Tromboxanos/antagonistas & inibidores , Tromboxanos/metabolismo , Vasoconstrição/efeitos dos fármacosRESUMO
INTRODUCTION: Prostacyclin (PGI2) is synthetized by PGI2 synthase (PGIS) and induces vasorelaxation via activation of cyclic AMP (cAMP) generating IP-receptor. Several components of the PGI2 signaling pathway are reduced in patients with pulmonary hypertension (PH). AIM: To study the effect of 17ß-estradiol (E2) on the PGI2 signaling pathway in human pulmonary arteries (HPA) and in their smooth muscle cells (hPASMC) derived from Group-3 PH and non-PH patients. METHODS: Following E2-treatments of isolated HPA and cultured hPASMC, we measured: 6-keto-Prostaglandin F1α (PGI2 stable metabolite) by ELISA, PGIS and IP protein levels by Western blot and HPA vasorelaxations with an organ bath system. RESULTS: Incubation with E2 (24/48 h, doses ≥ 10 nM) significantly increased the expression of PGIS in hPASMC derived from both PH (65-98%) and non-PH (21-33%) patients, whereas incubation with E2 (2 h, 0.1 and 1 µM) increased 6-keto-PGF1α production in HPA from Group-3 PH patients only, and did not affect 6-keto-PGF1α production in hPASMC from either non-PH or Group-3 PH patients. Increases in IP receptor expression were observed following 10 mM E2-treatment of hPASMC from non-PH (33% after 48 h) and Group-3 PH (23% after 24 h) patient lungs. Finally, preincubation with 100 nM E2 significantly increased arachidonic acid-induced vasorelaxation of HPA from non-PH patient lungs but not of HPA from Group-3 PH patient lungs. CONCLUSION: E2-treatment may help to restore the PGI2-pathway in Group-3 PH.
Assuntos
6-Cetoprostaglandina F1 alfa/metabolismo , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Hipertensão Pulmonar/metabolismo , Oxirredutases Intramoleculares/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Anti-Hipertensivos/farmacologia , Ácido Araquidônico/farmacologia , Estudos de Casos e Controles , Sistema Enzimático do Citocromo P-450/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Feminino , Humanos , Hipertensão Pulmonar/fisiopatologia , Oxirredutases Intramoleculares/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologiaRESUMO
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are mainly found in marine fish oils and commercially available fish oil supplements. Several studies have documented that n-3 PUFAs can reduce the risk of cardiovascular diseases through anti-inflammatory, anti-thrombotic, and anti-atherosclerotic properties. Notably, regulation of vascular tone is one of the most important bases of cardiovascular health and especially for maintaining blood pressure within optimal physiological ranges. Recent clinical and animal studies indicate an association between n-3 PUFAs and vascular functions. In this regard, many clinical trials and basic experimental studies have been conducted so far to investigate the influence of n-3 PUFAs on vascular tone. In this review, we have summarized the results obtained from both clinical and basic studies that evaluated the effect of n-3 PUFAs under physiological and pathological conditions. Moreover, we also focus on verifying the underlying basic molecular mechanism of n-3 PUFAs on the vascular system.
Assuntos
Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Animais , Doenças Cardiovasculares/tratamento farmacológico , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos , Óleos de PeixeRESUMO
BACKGROUND AND PURPOSE: In patients with pulmonary hypertension (PH) associated with lung disease and/or hypoxia (Group III), decreased pulmonary vascular tone and tissue hypoxia is therapeutically beneficial. PGE2 and PGI2 induce potent relaxation of human bronchi from non-PH (control) patients via EP4 and IP receptors, respectively. However, the effects of PGE2 /PGI2 and their mimetics on human bronchi from PH patients are unknown. Here, we have compared relaxant effects of several PGI2 -mimetics approved for treating PH Group I with several PGE2 -mimetics, in bronchial preparations derived from PH Group III and control patients. EXPERIMENTAL APPROACH: Relaxation of bronchial muscle was assessed in samples isolated from control and PH Group III patients. Expression of prostanoid receptors was analysed by western blot and real-time PCR, and endogenous PGE2 , PGI2 , and cAMP levels were determined by ELISA. KEY RESULTS: Maximal relaxations induced by different EP4 receptor agonists (PGE2 , L-902688, and ONO-AE1-329) were decreased in human bronchi from PH patients, compared with controls. However, maximal relaxations produced by PGI2 -mimetics (iloprost, treprostinil, and beraprost) were similar for both groups of patients. Both EP4 and IP receptor protein and mRNA expressions were significantly lower in human bronchi from PH patients. cAMP levels significantly correlated with PGI2 but not with PGE2 levels. CONCLUSION AND IMPLICATIONS: The PGI2 -mimetics retained maximal bronchodilation in PH Group III patients, whereas bronchodilation induced by EP4 receptor agonists was decreased. Restoration of EP4 receptor expression in airways of PH Group III patients with respiratory diseases could bring additional therapeutic benefit.
Assuntos
Brônquios/metabolismo , Broncodilatadores/metabolismo , Broncodilatadores/uso terapêutico , Dinoprostona/metabolismo , Dinoprostona/uso terapêutico , Hipertensão Pulmonar/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Anti-Hipertensivos/metabolismo , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Brônquios/efeitos dos fármacos , Brônquios/patologia , Broncodilatadores/farmacologia , Dinoprostona/farmacologia , Relação Dose-Resposta a Droga , Epoprostenol/análogos & derivados , Epoprostenol/metabolismo , Epoprostenol/farmacologia , Epoprostenol/uso terapêutico , Feminino , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/patologia , Iloprosta/metabolismo , Iloprosta/farmacologia , Iloprosta/uso terapêutico , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia , Pirrolidinonas/uso terapêutico , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Tetrazóis/metabolismo , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico , Vasodilatadores/metabolismo , Vasodilatadores/farmacologia , Vasodilatadores/uso terapêutico , Adulto JovemRESUMO
Pulmonary hypertension (PH) is a progressive and life-threating lung disorder characterized by elevated pulmonary artery pressure and vascular remodeling. PH is classified into five groups, and one of the most common and lethal forms, PH Group-III is defined as PH due to lung diseases and/or hypoxia. Due to the lack of studies in this group, PH-specific drug therapies including prostacyclin (PGI2) analogues have not been approved or recommended for use in these patients. PGI2 is synthesized by the PGI2 synthase (PGIS) enzyme, and its production is determined by measuring its stable metabolite, 6-keto-PGF1α. An impaired PGI2 pathway has been observed in PH animal models and in PH Group-I patients; however, there are contradictory results. The aim of this study is to determine whether PH Group-III is associated with altered expression of PGIS and production of PGI2 in humans. To explore this hypothesis, we measured PGIS expression (by western blot) and PGI2 production (by ELISA) in a large variety of preparations from the pulmonary circulation including human pulmonary artery, pulmonary vein, distal lung tissue, pulmonary artery smooth muscle cells (hPASMC), and bronchi in PH Group-III (n = 35) and control patients (n = 32). Our results showed decreased PGIS expression and/or 6-keto-PGF1α levels in human pulmonary artery, hPASMC, and distal lung tissue derived from PH Group-III patients. Moreover, the production of 6-keto-PGF1α from hPASMC positively correlated with PGIS expression and was inversely correlated with mean pulmonary artery pressure. On the other hand, PH Group-III pulmonary veins and bronchi did not show altered PGI2 production compared to controls. The deficit in PGIS expression and/or PGI2 production observed in pulmonary artery and distal lung tissue in PH Group-III patients may have important implications in the pathogenesis and treatment of PH Group-III.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Epoprostenol/metabolismo , Hipertensão Pulmonar/metabolismo , Oxirredutases Intramoleculares/metabolismo , Artéria Pulmonar/metabolismo , Brônquios/enzimologia , Brônquios/metabolismo , Hipóxia Celular/fisiologia , Células Cultivadas , Dinoprosta/metabolismo , Regulação para Baixo , Feminino , Humanos , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/enzimologia , Pulmão/metabolismo , Masculino , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/enzimologia , Veias Pulmonares/enzimologia , Veias Pulmonares/metabolismoRESUMO
BACKGROUND AND PURPOSE: The side effects of cyclooxygenase-2 (COX-2) inhibitors on the cardiovascular system could be associated with reduced prostaglandin (PG)I2 synthesis. Microsomal PGE synthase-1 (mPGES-1) catalyses the formation of PGE2 from COX-derived PGH2 . This enzyme is induced under inflammatory conditions and constitutes an attractive target for novel anti-inflammatory drugs. However, it is not known whether mPGES-1 inhibitors could be devoid of cardiovascular side effects. The aim of this study was to compare, in vitro, the effects of mPGES-1 and COX-2 inhibitors on vascular tone in human blood vessels. EXPERIMENTAL APPROACH: The vascular tone and prostanoid release from internal mammary artery (IMA) and saphenous vein (SV) incubated for 30 min with inhibitors of mPGES-1 or COX-2 were investigated under normal and inflammatory conditions. KEY RESULTS: In inflammatory conditions, mPGES-1 and COX-2 proteins were more expressed, and increased levels of PGE2 and PGI2 were released. COX-2 and NOS inhibitors increased noradrenaline induced vascular contractions in IMA under inflammatory conditions while no effect was observed in SV. Interestingly, the mPGES-1 inhibitor significantly reduced (30-40%) noradrenaline-induced contractions in both vessels. This effect was reversed by an IP (PGI2 receptor) antagonist but not modified by NOS inhibition. Moreover, PGI2 release was increased with the mPGES-1 inhibitor and decreased with the COX-2 inhibitor, while both inhibitors reduced PGE2 release. CONCLUSIONS AND IMPLICATIONS: In contrast to COX-2 inhibition, inhibition of mPGES-1 reduced vasoconstriction by increasing PGI2 synthesis. Targeting mPGES-1 could provide a lower risk of cardiovascular side effects, compared with those of the COX-2 inhibitors. LINKED ARTICLES: This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Assuntos
Epoprostenol/fisiologia , Artéria Torácica Interna/fisiologia , Prostaglandina-E Sintases/fisiologia , Veia Safena/fisiologia , Idoso , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/fisiologia , Inibidores de Ciclo-Oxigenase/farmacologia , Epoprostenol/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Artéria Torácica Interna/efeitos dos fármacos , Artéria Torácica Interna/metabolismo , Pessoa de Meia-Idade , Norepinefrina/farmacologia , Prostaglandina-E Sintases/antagonistas & inibidores , Prostaglandina-E Sintases/metabolismo , Veia Safena/efeitos dos fármacos , Veia Safena/metabolismo , Tiofenos/farmacologia , Vasoconstritores/farmacologiaRESUMO
Cyclooxygenase-2 (COX-2) induction in human internal mammary arteries (IMA) under inflammatory conditions has been associated with attenuated norepinephrine (NE)-induced vasoconstriction. This effect was associated with increased prostaglandin (PG) E2 and prostacyclin (PGI2) releases. The present study was designed to assess the role of these PG and their receptors (EP and IP, respectively) on the vascular reactivity during acute inflammation. Isolated IMA were cultured in the absence (Control conditions) or presence (Inflammatory conditions) of both interleukin-1 beta (IL-1ß) and lipopolysaccharide (LPS). The vasorelaxation and the increased content of cyclic adenosine monophosphate (cAMP) induced by iloprost, a PGI2 analogue, were significantly reduced under inflammatory conditions and restored in preparations cultured with the IP antagonist (CAY10441). Decreased cAMP levels under inflammatory conditions are due to at least increased phosphodiesterase (PDE) 4B expression. On the other hand, PGE2, thromboxane analogues and EP agonists-induced vasoconstrictions were not affected under inflammatory conditions. No vasorelaxation was observed with PGD2, PGE2 or the EP2/4 agonists in pre-contracted IMA. Finally, using RT-qPCR and immunohistochemistry, the COX-2, IP receptor and PGI2 synthase (PGIS) were detected. A significant increase of COX-2 and moderate increase of IP mRNA expression was observed under inflammatory conditions, whereas PGIS mRNA level was not affected. This study demonstrates that PGI2/IP receptor signalling and PGI2-induced relaxation are impaired in human IMA during acute inflammation, whereas the responses induced by other prostanoids are not affected. These results could explain some of the mechanisms of vascular dysfunction reported in inflammatory conditions.
Assuntos
Iloprosta/farmacologia , Artéria Torácica Interna/efeitos dos fármacos , Artéria Torácica Interna/fisiopatologia , Doenças Vasculares/fisiopatologia , Vasodilatação/efeitos dos fármacos , Doença Aguda , Idoso , AMP Cíclico/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Artéria Torácica Interna/metabolismo , Prostaglandinas/agonistas , Receptores de Prostaglandina/metabolismo , Doenças Vasculares/metabolismoRESUMO
Hydrogen sulfide (H2S) is a mediator with demonstrated protective effects for the cardiovascular system. On the other hand, prostaglandin (PG)E2 is involved in vascular wall remodeling by regulating matrix metalloproteinase (MMP) activities. We tested the hypothesis that endogenous H2S may modulate PGE2, MMP-1 activity and endogenous tissue inhibitors of MMPs (TIMP-1/-2). This regulatory pathway could be involved in thinning of abdominal aortic aneurysm (AAA) and thickening of saphenous vein (SV) varicosities. The expression of the enzyme responsible for H2S synthesis, cystathionine-γ-lyase (CSE) and its activity, were significantly higher in varicose vein as compared to SV. On the contrary, the endogenous H2S level and CSE expression were lower in AAA as compared to healthy aorta (HA). Endogenous H2S was responsible for inhibition of PGE2 synthesis mostly in varicose veins and HA. A similar effect was observed with exogenous H2S and consequently decreasing active MMP-1/TIMP ratios in SV and varicose veins. In contrast, in AAA, higher levels of PGE2 and active MMP-1/TIMP ratios were found versus HA. These findings suggest that differences in H2S content in AAA and varicose veins modulate endogenous PGE2 production and consequently the MMP/TIMP ratio. This mechanism may be crucial in vascular wall remodeling observed in different vascular pathologies (aneurysm, varicosities, atherosclerosis and pulmonary hypertension).