Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Bacteriol ; 206(4): e0006824, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38517170

RESUMO

Flavobacterium columnare causes columnaris disease in fish. Columnaris disease is incompletely understood, and adequate control measures are lacking. The type IX secretion system (T9SS) is required for F. columnare gliding motility and virulence. The T9SS and gliding motility machineries share some, but not all, components. GldN (required for gliding and for secretion) and PorV (involved in secretion but not required for gliding) are both needed for virulence, implicating T9SS-mediated secretion in virulence. The role of motility in virulence is uncertain. We constructed and analyzed sprB, sprF, and gldJ mutants that were defective for motility but that maintained T9SS function to understand the role of motility in virulence. Wild-type cells moved rapidly and formed spreading colonies. In contrast, sprB and sprF deletion mutants were partially defective in gliding and formed nonspreading colonies. Both mutants exhibited reduced virulence in rainbow trout fry. A gldJ deletion mutant was nonmotile, secretion deficient, and avirulent in rainbow trout fry. To separate the roles of GldJ in secretion and in motility, we generated gldJ truncation mutants that produce nearly full-length GldJ. Mutant gldJ563, which produces GldJ truncated at amino acid 563, was defective for gliding but was competent for secretion as measured by extracellular proteolytic activity. This mutant displayed reduced virulence in rainbow trout fry, suggesting that motility contributes to virulence. Fish that survived exposure to the sprB deletion mutant or the gldJ563 mutant exhibited partial resistance to later challenge with wild-type cells. The results aid our understanding of columnaris disease and may suggest control strategies.IMPORTANCEFlavobacterium columnare causes columnaris disease in many species of freshwater fish in the wild and in aquaculture systems. Fish mortalities resulting from columnaris disease are a major problem for aquaculture. F. columnare virulence is incompletely understood, and control measures are inadequate. Gliding motility and protein secretion have been suggested to contribute to columnaris disease, but evidence directly linking motility to disease was lacking. We isolated and analyzed mutants that were competent for secretion but defective for motility. Some of these mutants exhibited decreased virulence. Fish that had been exposed to these mutants were partially protected from later exposure to the wild type. The results contribute to our understanding of columnaris disease and may aid development of control strategies.


Assuntos
Proteínas de Bactérias , Doenças dos Peixes , Animais , Proteínas de Bactérias/metabolismo , Virulência , Proteínas Motores Moleculares/metabolismo , Flavobacterium , Doenças dos Peixes/microbiologia
2.
J Infect Dis ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041851

RESUMO

Bone and joint infections (BJIs) are difficult to treat and affect a growing number of patients, in which relapses are observed in 10-20% of the case. These relapses, which call for prolonged antibiotic treatment and increase resistance emergence risk, may originate from ill understood adaptation of the pathogen to the host. Here, we investigated three pairs of Escherichia coli strains from BJI cases and their relapses to unravel in-patient adaptation. Whole genome comparison presented evidence for positive selection and phenotypic characterization showed that biofilm formation remained unchanged, contrary to what is usually described in such cases. Although virulence was not modified, we identified the loss of two virulence factors contributing to immune system evasion in one of the studied strains. Other strategies, including global growth optimization and colicin production, likely allowed the strains to outcompete competitors. This work highlights the variety of strategies allowing in-patient adaptation in BJIs.

3.
PLoS Pathog ; 17(1): e1009302, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513205

RESUMO

The health and environmental risks associated with antibiotic use in aquaculture have promoted bacterial probiotics as an alternative approach to control fish infections in vulnerable larval and juvenile stages. However, evidence-based identification of probiotics is often hindered by the complexity of bacteria-host interactions and host variability in microbiologically uncontrolled conditions. While these difficulties can be partially resolved using gnotobiotic models harboring no or reduced microbiota, most host-microbe interaction studies are carried out in animal models with little relevance for fish farming. Here we studied host-microbiota-pathogen interactions in a germ-free and gnotobiotic model of rainbow trout (Oncorhynchus mykiss), one of the most widely cultured salmonids. We demonstrated that germ-free larvae raised in sterile conditions displayed no significant difference in growth after 35 days compared to conventionally-raised larvae, but were extremely sensitive to infection by Flavobacterium columnare, a common freshwater fish pathogen causing major economic losses worldwide. Furthermore, re-conventionalization with 11 culturable species from the conventional trout microbiota conferred resistance to F. columnare infection. Using mono-re-conventionalized germ-free trout, we identified that this protection is determined by a commensal Flavobacterium strain displaying antibacterial activity against F. columnare. Finally, we demonstrated that use of gnotobiotic trout is a suitable approach for the identification of both endogenous and exogenous probiotic bacterial strains protecting teleostean hosts against F. columnare. This study therefore establishes an ecologically-relevant gnotobiotic model for the study of host-pathogen interactions and colonization resistance in farmed fish.


Assuntos
Doenças dos Peixes/microbiologia , Flavobacterium/fisiologia , Vida Livre de Germes , Interações Hospedeiro-Patógeno , Microbiota , Oncorhynchus mykiss/microbiologia , Animais , Aquicultura , Água Doce
4.
Appl Environ Microbiol ; 88(3): e0170521, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34818105

RESUMO

Flavobacterium columnare causes columnaris disease in wild and cultured freshwater fish and is a major problem for sustainable aquaculture worldwide. The F. columnare type IX secretion system (T9SS) secretes many proteins and is required for virulence. The T9SS component GldN is required for secretion and gliding motility over surfaces. Genetic manipulation of F. columnare is inefficient, which has impeded identification of secreted proteins that are critical for virulence. Here, we identified a virulent wild-type F. columnare strain (MS-FC-4) that is highly amenable to genetic manipulation. This facilitated isolation and characterization of two deletion mutants lacking core components of the T9SS. Deletion of gldN disrupted protein secretion and gliding motility and eliminated virulence in zebrafish and rainbow trout. Deletion of porV disrupted secretion and virulence but not motility. Both mutants exhibited decreased extracellular proteolytic, hemolytic, and chondroitin sulfate lyase activities. They also exhibited decreased biofilm formation and decreased attachment to fish fins and other surfaces. Using genomic and proteomic approaches, we identified proteins secreted by the T9SS. We deleted 10 genes encoding secreted proteins and characterized the virulence of mutants lacking individual or multiple secreted proteins. A mutant lacking two genes encoding predicted peptidases exhibited reduced virulence in rainbow trout, and mutants lacking a predicted cytolysin showed reduced virulence in zebrafish and rainbow trout. The results establish F. columnare strain MS-FC-4 as a genetically amenable model to identify virulence factors. This may aid development of measures to control columnaris disease and impact fish health and sustainable aquaculture. IMPORTANCE Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish and is a major problem for aquaculture. Little is known regarding the virulence factors involved in this disease, and control measures are inadequate. The type IX secretion system (T9SS) secretes many proteins and is required for virulence, but the secreted virulence factors are not known. We identified a strain of F. columnare (MS-FC-4) that is well suited for genetic manipulation. The components of the T9SS and the proteins secreted by this system were identified. Deletion of core T9SS genes eliminated virulence. Genes encoding 10 secreted proteins were deleted. Deletion of two peptidase-encoding genes resulted in decreased virulence in rainbow trout, and deletion of a cytolysin-encoding gene resulted in decreased virulence in rainbow trout and zebrafish. Secreted peptidases and cytolysins are likely virulence factors and are targets for the development of control measures.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Animais , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium , Proteômica , Virulência , Peixe-Zebra
5.
Vet Res ; 46: 1, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25582708

RESUMO

Flavobacterium psychrophilum is an important fish pathogen, responsible for Cold Water Disease, with a significant economic impact on salmonid farms worldwide. In spite of this, little is known about the bacterial physiology and pathogenesis mechanisms, maybe because it is difficult to manipulate, being considered a fastidious microorganism. Mutants obtained using a Tn4351 transposon were screened in order to identify those with alteration in colony morphology, colony spreading and extracellular proteolytic activity, amongst other phenotypes. A F. psychrophilum mutant lacking gliding motility showed interruption of the FP1638 locus that encodes a putative type-2 glycosyltransferase (from here on referred to as fpgA gene, Flavobacterium psychrophilum glycosyltransferase). Additionally, the mutant also showed a decrease in the extracellular proteolytic activity as a consequence of down regulation in the fpgA mutant background of the fpp2-fpp1 operon promoter, responsible for the major extracellular proteolytic activity of the bacterium. The protein glycosylation profile of the parental strain showed the presence of a 22 kDa glycosylated protein which is lost in the mutant. Complementation with the fpgA gene led to the recovery of the wild-type phenotype. LD50 experiments in the rainbow trout infection model show that the mutant was highly attenuated. The pleiotropic phenotype of the mutant demonstrated the importance of this glycosyltranferase in the physiology and virulence of the bacterium. Moreover, the fpgA mutant strain could be considered a good candidate for the design of an attenuated vaccine.


Assuntos
Proteínas de Bactérias/genética , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/enzimologia , Flavobacterium/patogenicidade , Glicosiltransferases/genética , Oncorhynchus mykiss , Animais , Proteínas de Bactérias/metabolismo , Doenças dos Peixes/enzimologia , Infecções por Flavobacteriaceae/enzimologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/genética , Glicosiltransferases/metabolismo , Dose Letal Mediana , Virulência
6.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778358

RESUMO

Gnotobiotic animal models reconventionalized under controlled laboratory conditions with multi-species bacterial communities are commonly used to study host-microbiota interactions under presumably more reproducible conditions than conventional animals. The usefulness of these models is however limited by inter-animal variability in bacterial colonization and our general lack of understanding of the inter-individual fluctuation and spatio-temporal dynamics of microbiota assemblies at the micron to millimeter scale. Here, we show underreported variability in gnotobiotic models by analyzing differences in gut colonization efficiency, bacterial composition, and host intestinal mucus production between conventional and gnotobiotic zebrafish larvae re-conventionalized with a mix of 9 bacteria isolated from conventional microbiota. Despite similar bacterial community composition, we observed high variability in the spatial distribution of bacteria along the intestinal tract in the reconventionalized model. We also observed that, whereas bacteria abundance and intestinal mucus per fish were not correlated, reconventionalized fish had lower intestinal mucus compared to conventional animals, indicating that the stimulation of mucus production depends on the microbiota composition. Our findings, therefore, suggest that variable colonization phenotypes affect host physiology and impact the reproducibility of experimental outcomes in studies that use gnotobiotic animals. This work provides insights into the heterogeneity of gnotobiotic models and the need to accurately assess re-conventionalization for reproducibility in host-microbiota studies.

7.
Microbiome ; 11(1): 252, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951983

RESUMO

BACKGROUND: Perturbations of animal-associated microbiomes from chemical stress can affect host physiology and health. While dysbiosis induced by antibiotic treatments and disease is well known, chemical, nonantibiotic drugs have recently been shown to induce changes in microbiome composition, warranting further exploration. Loperamide is an opioid-receptor agonist widely prescribed for treating acute diarrhea in humans. Loperamide is also used as a tool to study the impact of bowel dysfunction in animal models by inducing constipation, but its effect on host-associated microbiota is poorly characterized. RESULTS: We used conventional and gnotobiotic larval zebrafish models to show that in addition to host-specific effects, loperamide also has anti-bacterial activities that directly induce changes in microbiota diversity. This dysbiosis is due to changes in bacterial colonization, since gnotobiotic zebrafish mono-colonized with bacterial strains sensitive to loperamide are colonized up to 100-fold lower when treated with loperamide. Consistently, the bacterial diversity of gnotobiotic zebrafish colonized by a mix of 5 representative bacterial strains is affected by loperamide treatment. CONCLUSION: Our results demonstrate that loperamide, in addition to host effects, also induces dysbiosis in a vertebrate model, highlighting that established treatments can have underlooked secondary effects on microbiota structure and function. This study further provides insights for future studies exploring how common medications directly induce changes in host-associated microbiota. Video Abstract.


Assuntos
Loperamida , Microbiota , Humanos , Animais , Loperamida/efeitos adversos , Peixe-Zebra/microbiologia , Disbiose/induzido quimicamente , Constipação Intestinal/induzido quimicamente , Bactérias
8.
Front Cell Infect Microbiol ; 13: 1093393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816589

RESUMO

Flavobacterium columnare causes columnaris disease in freshwater fish in both natural and aquaculture settings. This disease is often lethal, especially when fish population density is high, and control options such as vaccines are limited. The type IX secretion system (T9SS) is required for F. columnare virulence, but secreted virulence factors have not been fully identified. Many T9SS-secreted proteins are predicted peptidases, and peptidases are common virulence factors of other pathogens. T9SS-deficient mutants, such as ΔgldN and ΔporV, exhibit strong defects in secreted proteolytic activity. The F. columnare genome has many peptidase-encoding genes that may be involved in nutrient acquisition and/or virulence. Mutants lacking individual peptidase-encoding genes, or lacking up to ten peptidase-encoding genes, were constructed and examined for extracellular proteolytic activity, for growth defects, and for virulence in zebrafish and rainbow trout. Most of the mutants retained virulence, but a mutant lacking 10 peptidases, and a mutant lacking the single peptidase TspA exhibited decreased virulence in rainbow trout fry, suggesting that peptidases contribute to F. columnare virulence.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Animais , Virulência , Peptídeo Hidrolases/metabolismo , Peixe-Zebra , Infecções por Flavobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Fatores de Virulência/metabolismo , Flavobacterium
9.
Front Cell Infect Microbiol ; 12: 1029833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325469

RESUMO

Flavobacterium columnare, which causes columnaris disease, is one of the costliest pathogens in the freshwater fish-farming industry. The virulence mechanisms of F. columnare are not well understood and current methods to control columnaris outbreaks are inadequate. Iron is an essential nutrient needed for metabolic processes and is often required for bacterial virulence. F. columnare produces siderophores that bind ferric iron for transport into the cell. The genes needed for siderophore production have been identified, but other components involved in F. columnare iron uptake have not been studied in detail. We identified the genes encoding the predicted secreted heme-binding protein HmuY, the outer membrane iron receptors FhuA, FhuE, and FecA, and components of an ATP binding cassette (ABC) transporter predicted to transport ferric iron across the cytoplasmic membrane. Deletion mutants were constructed and examined for growth defects under iron-limited conditions and for virulence against zebrafish and rainbow trout. Mutants with deletions in genes encoding outer membrane receptors, and ABC transporter components exhibited growth defects under iron-limited conditions. Mutants lacking multiple outer membrane receptors, the ABC transporter, or HmuY retained virulence against zebrafish and rainbow trout mirroring that exhibited by the wild type. Some mutants predicted to be deficient in multiple steps of iron uptake exhibited decreased virulence. Survivors of exposure to such mutants were partially protected against later infection by wild-type F. columnare.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Animais , Virulência/genética , Infecções por Flavobacteriaceae/microbiologia , Peixe-Zebra , Doenças dos Peixes/microbiologia , Flavobacterium/genética , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/microbiologia , Sideróforos/genética , Sideróforos/metabolismo , Ferro/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo
10.
J Bacteriol ; 193(4): 944-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21169490

RESUMO

Application of in vivo expression technology (IVET) to Yersinia ruckeri, an important fish pathogen, allowed the identification of two adjacent genes that represent a novel bacterial system involved in the uptake and degradation of l-cysteine. Analysis of the translational products of both genes showed permease domains (open reading frame 1 [ORF1]) and amino acid position identities (ORF2) with the l-cysteine desulfidase from Methanocaldococcus jannaschii, a new type of enzyme involved in the breakdown of l-cysteine. The operon was named cdsAB (cysteine desulfidase) and is found widely in anaerobic and facultative bacteria. cdsAB promoter analysis using lacZY gene fusion showed highest induction in the presence of l-cysteine. Two cdsA and cdsB mutant strains were generated. The limited toxic effect and the low utilization of l-cysteine observed in the cdsA mutant, together with radiolabeled experiments, strongly suggested that CdsA is an l-cysteine permease. Fifty percent lethal dose (LD(50)) and competence index experiments showed that both the cdsA and cdsB loci were involved in the pathogenesis of the bacteria. In conclusion, this study has shown for the first time in bacteria the existence of an l-cysteine uptake system that together with an additional l-cysteine desulfidase-encoding gene constitutes a novel operon involved in bacterial virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Cistationina gama-Liase/metabolismo , Cisteína/metabolismo , Doenças dos Peixes/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Óperon , Yersiniose/veterinária , Yersinia ruckeri/patogenicidade , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Cistationina gama-Liase/química , Cistationina gama-Liase/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Oncorhynchus mykiss/microbiologia , Alinhamento de Sequência , Yersiniose/microbiologia , Yersinia ruckeri/enzimologia , Yersinia ruckeri/genética , Yersinia ruckeri/metabolismo
11.
Microbiology (Reading) ; 157(Pt 4): 1196-1204, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21292745

RESUMO

Flavobacterium psychrophilum is a very significant fish pathogen that secretes two biochemically characterized extracellular proteolytic enzymes, Fpp1 and Fpp2. The genes encoding these enzymes are organized as an fpp2-fpp1 tandem in the genome of strain F. psychrophilum THC02/90. Analysis of the corresponding encoded proteins showed that they belong to two different protease families. For gene function analysis, new genetic tools were developed in F. psychrophilum by constructing stable isogenic fpp1 and fpp2 mutants via single-crossover homologous recombination. RT-PCR analysis of wild-type and mutant strains suggested that both genes are transcribed as a single mRNA from the promoter located upstream of the fpp2 gene. Phenotypic characterization of the fpp2 mutant showed lack of caseinolytic activity and higher colony spreading compared with the wild-type strain. Both characteristics were recovered in the complemented strain. One objective of this work was to assess the contribution to virulence of these proteolytic enzymes. LD(50) experiments using the wild-type strain and mutants showed no significant differences in virulence in a rainbow trout challenge model, suggesting instead a possible nutritional role. The gene disruption procedure developed in this work, together with the knowledge of the complete genome sequence of F. psychrophilum, open new perspectives for the study of gene function in this bacterium.


Assuntos
Doenças dos Peixes/microbiologia , Flavobacterium/enzimologia , Mutação , Peptídeo Hidrolases/metabolismo , Fatores de Virulência/metabolismo , Animais , Caseínas/metabolismo , Doenças dos Peixes/mortalidade , Flavobacterium/genética , Flavobacterium/isolamento & purificação , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Teste de Complementação Genética , Dose Letal Mediana , Oncorhynchus mykiss , Peptídeo Hidrolases/genética , Regiões Promotoras Genéticas , Recombinação Genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Virulência , Fatores de Virulência/genética
12.
Microbiology (Reading) ; 157(Pt 7): 2106-2119, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21546587

RESUMO

Lactococcus garvieae is the causative microbial agent of lactococcosis, an important and damaging fish disease in aquaculture. This bacterium has also been isolated from vegetables, milk, cheese, meat and sausages, from cow and buffalo as a mastitis agent, and even from humans, as an opportunistic infectious agent. In this work pathogenicity experiments were performed in rainbow trout and mouse models with strains isolated from human (L. garvieae HF) and rainbow trout (L. garvieae UNIUDO74; henceforth referred to as 074). The mean LD(50) value in rainbow trout obtained for strain 074 was 2.1 × 10(2) ± 84 per fish. High doses of the bacteria caused specific signs of disease as well as histological alterations in mice. In contrast, strain HF did not prove to be pathogenic either for rainbow trout or for mice. Based on these virulence differences, two suppressive subtractive hybridizations were carried out to identify unique genetic sequences present in L. garvieae HF (SSHI) and L. garvieae 074 (SSHII). Differential dot-blot screening of the subtracted libraries allowed the identification of 26 and 13 putative ORFs specific for L. garvieae HF and L. garvieae 074, respectively. Additionally, a PCR-based screening of 12 of the 26 HF-specific putative ORFs and the 13 074-specific ones was conducted to identify their presence/absence in 25 L. garvieae strains isolated from different origins and geographical areas. This study demonstrates the existence of genetic heterogeneity within L. garvieae isolates and provides a more complete picture of the genetic background of this bacterium.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Lactococcus/genética , Lactococcus/patogenicidade , Oncorhynchus mykiss/microbiologia , Animais , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Variação Genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Lactococcus/isolamento & purificação , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Virulência/genética
13.
Appl Environ Microbiol ; 77(3): 1107-10, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131526

RESUMO

A three-gene operon, named yctCBA (Yersinia citrate transporter), induced by citrate and repressed by glucose was identified from a previously selected in vivo-induced (ivi) clone in the fish pathogen Yersinia ruckeri. Interestingly, despite being an ivi clone, the drastic growth reduction of the yctC mutant in the presence of citrate, and the relatively high content of this compound in rainbow trout serum, the operon was not required for virulence.


Assuntos
Ácido Cítrico/metabolismo , Doenças dos Peixes/microbiologia , Oncorhynchus mykiss/microbiologia , Óperon , Yersiniose/veterinária , Yersinia ruckeri/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA , Virulência , Yersiniose/microbiologia , Yersinia ruckeri/genética , Yersinia ruckeri/crescimento & desenvolvimento , Yersinia ruckeri/metabolismo
14.
Anim Microbiome ; 3(1): 74, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689834

RESUMO

BACKGROUND: The gut microbiota influences host performance playing a relevant role in homeostasis and function of the immune system. The aim of the present work was to identify microbial signatures linked to immunity traits and to characterize the contribution of host-genome and gut microbiota to the immunocompetence in healthy pigs. RESULTS: To achieve this goal, we undertook a combination of network, mixed model and microbial-wide association studies (MWAS) for 21 immunity traits and the relative abundance of gut bacterial communities in 389 pigs genotyped for 70K SNPs. The heritability (h2; proportion of phenotypic variance explained by the host genetics) and microbiability (m2; proportion of variance explained by the microbial composition) showed similar values for most of the analyzed immunity traits, except for both IgM and IgG in plasma that was dominated by the host genetics, and the haptoglobin in serum which was the trait with larger m2 (0.275) compared to h2 (0.138). Results from the MWAS suggested a polymicrobial nature of the immunocompetence in pigs and revealed associations between pigs gut microbiota composition and 15 of the analyzed traits. The lymphocytes phagocytic capacity (quantified as mean fluorescence) and the total number of monocytes in blood were the traits associated with the largest number of taxa (6 taxa). Among the associations identified by MWAS, 30% were confirmed by an information theory network approach. The strongest confirmed associations were between Fibrobacter and phagocytic capacity of lymphocytes (r = 0.37), followed by correlations between Streptococcus and the percentage of phagocytic lymphocytes (r = -0.34) and between Megasphaera and serum concentration of haptoglobin (r = 0.26). In the interaction network, Streptococcus and percentage of phagocytic lymphocytes were the keystone bacterial and immune-trait, respectively. CONCLUSIONS: Overall, our findings reveal an important connection between gut microbiota composition and immunity traits in pigs, and highlight the need to consider both sources of information, host genome and microbial levels, to accurately characterize immunocompetence in pigs.

15.
ISME J ; 15(3): 702-719, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077888

RESUMO

The long-known resistance to pathogens provided by host-associated microbiota fostered the notion that adding protective bacteria could prevent or attenuate infection. However, the identification of endogenous or exogenous bacteria conferring such protection is often hindered by the complexity of host microbial communities. Here, we used zebrafish and the fish pathogen Flavobacterium columnare as a model system to study the determinants of microbiota-associated colonization resistance. We compared infection susceptibility in germ-free, conventional and reconventionalized larvae and showed that a consortium of 10 culturable bacterial species are sufficient to protect zebrafish. Whereas survival to F. columnare infection does not rely on host innate immunity, we used antibiotic dysbiosis to alter zebrafish microbiota composition, leading to the identification of two different protection strategies. We first identified that the bacterium Chryseobacterium massiliae individually protects both larvae and adult zebrafish. We also showed that an assembly of 9 endogenous zebrafish species that do not otherwise protect individually confer a community-level resistance to infection. Our study therefore provides a rational approach to identify key endogenous protecting bacteria and promising candidates to engineer resilient microbial communities. It also shows how direct experimental analysis of colonization resistance in low-complexity in vivo models can reveal unsuspected ecological strategies at play in microbiota-based protection against pathogens.


Assuntos
Microbiota , Peixe-Zebra , Animais , Disbiose , Flavobacterium/genética
16.
Anim Microbiome ; 3(1): 47, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225826

RESUMO

BACKGROUND: Farmed fish food with reduced fish-derived products are gaining growing interest due to the ecological impact of fish-derived protein utilization and the necessity to increase aquaculture sustainability. Although different terrestrial plant proteins could replace fishmeal proteins, their use is associated with adverse effects. Here, we investigated how diets composed of terrestrial vegetal sources supplemented with proteins originating from insect, yeast or terrestrial animal by-products affect rainbow trout (Onchorynchus mykiss) gut microbiota composition, growth performance and resistance to bacterial infection by the fish pathogen Flavobacterium psychrophilum responsible for frequent outbreaks in aquaculture settings. RESULTS: We showed that the tested regimes significantly increased gut bacterial richness compared to full vegetal or commercial-like diets, and that vegetal diet supplemented with insect and yeast proteins improves growth performance compared to full vegetal diet without altering rainbow trout susceptibility to F. psychrophilum infection. CONCLUSION: Our results demonstrate that the use of insect and yeast protein complements to vegetal fish feeds maintain microbiota functions, growth performance and fish health, therefore identifying promising alternative diets to improve aquaculture's sustainability.

17.
Microorganisms ; 8(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899237

RESUMO

Innovative fish diets made of terrestrial plants supplemented with sustainable protein sources free of fish-derived proteins could contribute to reducing the environmental impact of the farmed fish industry. However, such alternative diets may influence fish gut microbial community, health, and, ultimately, growth performance. Here, we developed five fish feed formulas composed of terrestrial plant-based nutrients, in which fish-derived proteins were substituted with sustainable protein sources, including insect larvae, cyanobacteria, yeast, or recycled processed poultry protein. We then analyzed the growth performance of European sea bass (Dicentrarchus labrax L.) and the evolution of gut microbiota of fish fed the five formulations. We showed that replacement of 15% protein of a vegetal formulation by insect or yeast proteins led to a significantly higher fish growth performance and feed intake when compared with the full vegetal formulation, with feed conversion ratio similar to a commercial diet. 16S rRNA gene sequencing monitoring of the sea bass gut microbial community showed a predominance of Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes phyla. The partial replacement of protein source in fish diets was not associated with significant differences on gut microbial richness. Overall, our study highlights the adaptability of European sea bass gut microbiota composition to changes in fish diet and identifies promising alternative protein sources for sustainable aquafeeds with terrestrial vegetal complements.

18.
Int Microbiol ; 12(4): 207-14, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20112225

RESUMO

Colonies of the fish pathogen Flavobacterium psychrophilum have gliding motility in media with low agar concentrations. Although gliding motility, particularly in Flavobacterium johnsoniae, has been well-studied, little is known about its regulation by environmental factors. The work described here shows that the ability of F. psychrophilum to spread over surfaces depends on nutrient availability. In fact, as the nutrient contents of the medium decreased, spreading was favored and the diameter of the colonies increased. Macroscopy examination revealed modifications in colony morphology as nutrient depletion increased: from a dense and defined colony to the formation of microcolonies inside a general colony structure. Additionally, colony expansion dynamics and population density across the colony radius varied inversely with bacterial biomass production. Motility was an immediate response when bacteria were transferred from a rich to a more diluted medium. Our results suggest that, when nutrients are limiting, F. psychrophilum activates a specific growth mode that enables it to colonize surfaces by means of gliding motility. The use of diluted media allowed the differentiation, among previously isolated F. psychrophilum non-gliding mutants, of those completely unable to glide and those with only partially impaired gliding ability.


Assuntos
Biomassa , Flavobacterium/fisiologia , Locomoção , Estresse Fisiológico , Meios de Cultura/química , Flavobacterium/crescimento & desenvolvimento , Flavobacterium/metabolismo , Microscopia
19.
FEMS Microbiol Ecol ; 62(1): 1-11, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17908096

RESUMO

After induction of the viable but nonculturable (VBNC) state in Escherichia coli populations, we analysed abiotic and biotic factors suggested to promote the resuscitation process. The response to the stressing conditions implied the formation of three subpopulations, culturable, VBNC and nonviable. In most adverse situations studied, the VBNC subpopulation did not represent the dominant fraction, decreasing with time. This suggests that, in most cases, the VBNC is not a successful phenotype. Combining methods of dilution and inhibition of remaining culturable cells, we designed a working protocol in order to distinguish unequivocally between regrowth and resuscitation. Reversion of abiotic factors inducing nonculturability as well as prevention of additional oxidative stress did not provoke resuscitation. Participation of biotic factors was studied by addition of supernatants from different origin without positive results. These results indicate that the E. coli strain used is not able to resuscitate from the VBNC state. VBNC cells release into the surrounding medium, and could thus aid in the survival of persisting culturable cells. The formation of a VBNC subpopulation could thus be considered as an adaptive process, designed for the benefit of the population as a whole.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Viabilidade Microbiana , Contagem de Colônia Microbiana , Meios de Cultura
20.
Genome Announc ; 5(8)2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28232446

RESUMO

We report here the complete annotated genome sequence of Flavobacterium psychrophilum OSU THCO2-90, isolated from Coho salmon (Oncorhynchus kisutch) in Oregon. The genome consists of a circular chromosome with 2,343 predicted open reading frames. This strain has proved to be a valuable tool for functional genomics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA