Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 166: 103792, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996931

RESUMO

Polyamines are ubiquitous small organic cations, and their roles as regulators of several cellular processes are widely recognized. They are implicated in the key stages of the fungal life cycle. Ustilago maydis is a phytopathogenic fungus, the causal agent of common smut of maize and a model system to understand dimorphism and virulence. U. maydis grows in yeast form at pH 7 and it can develop its mycelial form in vitro at pH 3. Δodc mutants that are unable to synthesize polyamines, grow as yeast at pH 3 with a low putrescine concentration, and to complete its dimorphic transition high putrescine concentration is require. Δspd mutants require spermidine to grow and cannot form mycelium at pH 3. In this work, the increased expression of the mating genes, mfa1 and mfa2, on Δodc mutants, was related to high putrescine concentration. Global gene expression analysis comparisons of Δodc and Δspd U. maydis mutants indicated that 2,959 genes were differentially expressed in the presence of exogenous putrescine at pH 7 and 475 genes at pH 3. While, in Δspd mutant, the expression of 1,426 genes was affected by exogenous spermine concentration at pH 7 and 11 genes at pH 3. Additionally, we identified 28 transcriptional modules with correlated expression during seven tested conditions: mutant genotype, morphology (yeast, and mycelium), pH, and putrescine or spermidine concentration. Furthermore, significant differences in transcript levels were noted for genes in modules relating to pH and genotype genes involved in ribosome biogenesis, mitochondrial oxidative phosphorylation, N-glycan synthesis, and Glycosylphosphatidylinositol (GPI)-anchor. In summary, our results offer a valuable tool for the identification of potential factors involved in phenomena related to polyamines and dimorphism.


Assuntos
Poliaminas , Proteínas de Saccharomyces cerevisiae , Poliaminas/metabolismo , Putrescina/metabolismo , Putrescina/farmacologia , Espermidina/metabolismo , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Espermidina Sintase/genética , Saccharomyces cerevisiae/genética , Caracteres Sexuais , Expressão Gênica , Lipoproteínas/genética , Feromônios , Proteínas de Saccharomyces cerevisiae/genética
2.
Sensors (Basel) ; 22(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35590958

RESUMO

Resilient cities incorporate a social, ecological, and technological systems perspective through their trees, both in urban and peri-urban forests and linear street trees, and help promote and understand the concept of ecosystem resilience. Urban tree inventories usually involve the collection of field data on the location, genus, species, crown shape and volume, diameter, height, and health status of these trees. In this work, we have developed a multi-stage methodology to update urban tree inventories in a fully automatic way, and we have applied it in the city of Pamplona (Spain). We have compared and combined two of the most common data sources for updating urban tree inventories: Airborne Laser Scanning (ALS) point clouds combined with aerial orthophotographs, and street-level imagery from Google Street View (GSV). Depending on the data source, different methodologies were used to identify the trees. In the first stage, the use of individual tree detection techniques in ALS point clouds was compared with the detection of objects (trees) on street level images using computer vision (CV) techniques. In both cases, a high success rate or recall (number of true positive with respect to all detectable trees) was obtained, where between 85.07% and 86.42% of the trees were well-identified, although many false positives (FPs) or trees that did not exist or that had been confused with other objects were always identified. In order to reduce these errors or FPs, a second stage was designed, where FP debugging was performed through two methodologies: (a) based on the automatic checking of all possible trees with street level images, and (b) through a machine learning binary classification model trained with spectral data from orthophotographs. After this second stage, the recall decreased to about 75% (between 71.43 and 78.18 depending on the procedure used) but most of the false positives were eliminated. The results obtained with both data sources were robust and accurate. We can conclude that the results obtained with the different methodologies are very similar, where the main difference resides in the access to the starting information. While the use of street-level images only allows for the detection of trees growing in trafficable streets and is a source of information that is usually paid for, the use of ALS and aerial orthophotographs allows for the location of trees anywhere in the city, including public and private parks and gardens, and in many countries, these data are freely available.


Assuntos
Ecossistema , Árvores , Cidades , Florestas , Lasers
3.
Food Microbiol ; 99: 103830, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119115

RESUMO

The occurrence of various foodborne disease outbreaks linked to the consumption of cucumbers worldwide in the last years raised concerns regarding the survival ability of foodborne pathogens on this food matrix. This work aimed at evaluating and quantifying the survival of Escherichia coli O157:H7 and Salmonella spp. on cucumber surfaces. Cucumbers were inoculated with a 5-strain cocktail of each microorganism and kept at 25 °C. The survival ability of two green fluorescent protein (GFP) labelled Salmonella strains inoculated individually on cucumbers was also evaluated. The inoculated areas were swabbed at different time intervals (maximum of 72 h) and cells were enumerated by plate count method (log CFU/cm2). The population of both pathogens decreased significantly on cucumber surfaces over time. E. coli O157:H7 could only be recovered up to 8 h while Salmonella spp. could be detected up to 24 h. The GFP-labelled Salmonella strains showed similar behaviour on cucumbers compared to the evaluated Salmonella cocktail. Survival kinetic parameters were estimated by fitting the Weibull model to the survival data. The data obtained in this study indicate that despite of the rapid decrease on concentrations of both pathogens evaluated on cucumbers surfaces, strategies to avoid their contamination during the supply chain as well as proper cleaning and disinfection protocols must be put forward to mitigate both E. coli O57:H7 and Salmonella on cucumbers and therefore, to decrease the exposure of consumers to microbial hazards and to avoid cross-contamination events during distribution, retail and in domestic environments.


Assuntos
Cucumis sativus/microbiologia , Escherichia coli O157/crescimento & desenvolvimento , Salmonella/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Frutas/microbiologia , Viabilidade Microbiana
4.
Food Microbiol ; 94: 103649, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33279074

RESUMO

In this study, the bioprotective potential of Lactobacillus sakei CTC494 against Listeria monocytogenes CTC1034 was evaluated on vacuum packaged hot-smoked sea bream at 5 °C and dynamic temperatures ranging from 3 to 12 °C. The capacity of three microbial competition interaction models to describe the inhibitory effect of L. sakei CTC494 on L. monocytogenes was assessed based on the Jameson effect and Lotka-Volterra approaches. A sensory analysis was performed to evaluate the spoiling capacity of L. sakei CTC494 on the smoked fish product at 5 °C. Based on the sensory results, the bioprotection strategy against the pathogen was established by inoculating the product at a 1:2 ratio (pathogen:bioprotector, log CFU/g). The kinetic growth parameters of both microorganisms were estimated in mono-culture at constant storage (5 °C). In addition, the inhibition function parameters of the tested interaction models were estimated in co-culture at constant and dynamic temperature storage using as input the mono-culture kinetic parameters. The growth potential (δ log) of L. monocytogenes, in mono-culture, was 3.5 log on smoked sea bream during the experimental period (20 days). In co-culture, L. sakei CTC494 significantly reduced the capability of L. monocytogenes to grow, although its effectiveness was temperature dependent. The LAB strain limited the growth of the pathogen under storage at 5 °C (<1 log increase) and at dynamic profile 2 (<2 log increase). Besides, under storage at dynamic profile 1, the growth of L. monocytogenes was inhibited (<0.5 log increase). These results confirmed the efficacy of L. sakei CTC494 for controlling the pathogen growth on the studied fish product. The Lotka-Volterra competition model showed slightly better fit to the observed L. monocytogenes growth response than the Jameson-based models according to the statistical performance. The proposed modelling approach could support the assessment and establishment of bioprotective culture-based strategies aimed at reducing the risk of listeriosis linked to the consumption of RTE hot-smoked sea bream.


Assuntos
Produtos Pesqueiros/microbiologia , Conservação de Alimentos/métodos , Latilactobacillus sakei/fisiologia , Listeria monocytogenes/crescimento & desenvolvimento , Animais , Antibiose , Embalagem de Alimentos , Listeria monocytogenes/fisiologia , Dourada/microbiologia
5.
Int Microbiol ; 23(1): 121-126, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31915950

RESUMO

In the present manuscript, we describe the mechanisms involved in the yeast-to-hypha dimorphic transition of the plant pathogenic Basidiomycota fungus Ustilago maydis. During its life cycle, U. maydis presents two stages: one in the form of haploid saprophytic yeasts that divide by budding and the other that is the product of the mating of sexually compatible yeast cells (sporidia), in the form of mycelial dikaryons that invade the plant host. The occurrence of the involved dimorphic transition is controlled by the two mating loci a and b. In addition, the dimorphic event can be obtained in vitro by different stimuli: change in the pH of the growth medium, use of different carbon sources, and by nitrogen depletion. The presence of other factors and mechanisms may affect this phenomenon; among these, we may cite the PKA and MAPK signal transduction pathways, polyamines, and factors that affect the structure of the nucleosomes. Some of these factors and conditions may affect all these dimorphic events, or they may be specific for only one or more but not all the processes involved. The conclusion reached by these experiments is that U. maydis has constituted a useful model for the analysis of the mechanisms involved in cell differentiation of fungi in general.


Assuntos
Transdução de Sinais , Ustilago/citologia , Ustilago/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metilação de DNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histidina Quinase/metabolismo , Histona Acetiltransferases/metabolismo , Homeostase , Concentração de Íons de Hidrogênio , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Poliaminas/metabolismo
6.
Food Microbiol ; 90: 103498, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336378

RESUMO

This study was aimed at characterizing microbiologically Gilthead sea bream (Sparus aurata) and Sea bass (Dicentrarchus labrax) produced in two estuarine ecosystems in Andalusia (Spain): the estuary of the river Guadalquivir (La Puebla del Río, Sevilla) (A), and the estuary of the river Guadiana (Ayamonte, Huelva) (B). The collected fish individuals and water were analysed for hygiene indicator microorganisms and pathogens. The statistical analysis of results revealed that microbial counts for the different microbiological parameters were not statistically different for fish type. On the contrary, considering anatomic part, viscera showed significantly higher concentrations for Enterobacteriaceae, total coliforms and for Staphylococcus spp. coagulase +. Furthermore, location A showed in water and fish higher levels for lactic acid bacteria, aerobic mesophilic bacteria, Enterobacteriaceae, total coliforms and Staphylococcus spp. coagulase +. Neither Listeria monocytogenes, nor Salmonella spp. were detected, though Vibrio parahaemolyticus was identified, molecularly, in estuarine water in location B. The predictive analysis demonstrated that the initial microbiological quality could have an impact on product shelf-life, being longer for location B, with better microbiological quality. Results stress the relevance of preventing the microbiological contamination of water in estuary production systems in order to assure the quality and safety of Gilthead sea bream and Sea bass.


Assuntos
Aquicultura , Bactérias/isolamento & purificação , Bass/microbiologia , Doenças dos Peixes/microbiologia , Dourada/microbiologia , Animais , Bactérias/classificação , Bactérias/patogenicidade , Ecossistema , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/patogenicidade , Estuários , Doenças dos Peixes/epidemiologia , Armazenamento de Alimentos , Prevalência , Alimentos Marinhos/microbiologia , Espanha/epidemiologia , Staphylococcus/isolamento & purificação , Staphylococcus/patogenicidade , Vibrio parahaemolyticus/isolamento & purificação , Vibrio parahaemolyticus/patogenicidade
7.
Food Microbiol ; 86: 103346, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703876

RESUMO

This work aimed to study the effect of the combination of Sodium hypochlorite, the most used disinfectant by the vegetable industry, with a natural antimicrobial, benzyl-isothiocyanate (BITC), considering cutting surface and contact time, on the reduction of Salmonella in fresh-cut produce in washing operations under typical industrial conditions. Overall, the combinations of disinfectant and process parameters resulted in a mean reduction of Salmonella of 2.5 log CFU/g. According to statistical analysis, free chlorine and BITC concentrations, contact time and cut size exerted a significant effect on the Salmonella reduction (p ≤ 0.05). The optimum combination of process parameter values yielding the highest Salmonella reduction was a lettuce cut size of 15 cm2 washed for 110 s in industrial water containing 160 mg/L free chlorine and 40 mg/L BITC. A predictive model was also derived, which, as illustrated, could be applied to optimize industrial disinfection and develop probabilistic Exposure Assessments considering the effect of washing process parameters on the levels of Salmonella contamination in leafy green products. The present study demonstrated the efficacy of chlorine to reduce Salmonella populations in fresh-cut lettuce while highlighting the importance of controlling the washing process parameters, such as, contact time, cut size and concentration of the disinfectant to increase disinfectant efficacy and improve food safety.


Assuntos
Cloro/farmacologia , Desinfecção/métodos , Manipulação de Alimentos/métodos , Isotiocianatos/farmacologia , Lactuca/microbiologia , Salmonella/efeitos dos fármacos , Desinfetantes/farmacologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Inocuidade dos Alimentos , Lactuca/crescimento & desenvolvimento , Salmonella/crescimento & desenvolvimento , Hipoclorito de Sódio/farmacologia , Fatores de Tempo , Verduras/crescimento & desenvolvimento , Verduras/microbiologia
8.
Molecules ; 25(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708406

RESUMO

Horticultural plant residues (tomato, pepper, and eggplant) were identified as new sources for lignocellulose nanofibers (LCNF). Cellulosic pulp was obtained from the different plant residues using an environmentally friendly process, energy-sustainable, simple, and with low-chemical reagent consumption. The chemical composition of the obtained pulps was analyzed in order to study its influence in the nanofibrillation process. Cellulosic fibers were subjected to two different pretreatments, mechanical and TEMPO(2,2,6,6-Tetramethyl-piperidin-1-oxyl)-mediated oxidation, followed by high-pressure homogenization to produce different lignocellulose nanofibers. Then, LCNF were deeply characterized in terms of nanofibrillation yield, cationic demand, carboxyl content, morphology, crystallinity, and thermal stability. The suitability of each raw material to produce lignocellulose nanofibers was analyzed from the point of view of each pretreatment. TEMPO-mediated oxidation was identified as a more effective pretreatment to produce LCNF, however, it produces a decrease in the thermal stability of the LCNF. The different LCNF were added as reinforcing agent on recycled paperboard and compared with the improving produced by the industrial mechanical beating. The analysis of the papersheets' mechanical properties shows that the addition of LCNF as a reinforcing agent in the paperboard recycling process is a viable alternative to mechanical beating, achieving greater reinforcing effect and increasing the products' life cycles.


Assuntos
Lignina/química , Lignina/isolamento & purificação , Nanofibras/química , Papel , Extratos Vegetais/química , Capsicum/química , Solanum lycopersicum/química , Reciclagem , Solanum melongena/química
9.
Food Sci Technol Int ; 20(1): 3-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23733816

RESUMO

The objective of this work was to study the effect of post-packaging pasteurization on the sensory quality and growth of natural microorganisms during refrigerated storage (6 °C) of a cooked meat product considering two packaging atmospheres based on mixture of typical gases (CO(2)/N(2) (22/78%) and novel gases (CO(2)/Ar (17/83%)). Growth of lactic acid bacteria was significantly different between samples with and without post-packaging pasteurization, showing a growth rate >0.44 and equal to 0.28 log cfu/day, respectively. For samples with post-packaging pasteurization, atmosphere CO(2)/Ar resulted in a lower growth of lactic acid bacteria and a better sensory quality. Overall, samples without post-packaging pasteurization did not show a significant reduction of sensory quality during storage time (121 days) while samples with post-packaging pasteurization showed deterioration in their sensory quality. Further investigation is needed to obtain more definitive conclusions about the effect of post-packaging pasteurization and argon-based packaging atmospheres on cooked meat products.


Assuntos
Argônio , Microbiologia de Alimentos/métodos , Embalagem de Alimentos/métodos , Qualidade dos Alimentos , Produtos da Carne/microbiologia , Pasteurização/métodos , Animais , Dióxido de Carbono , Contagem de Colônia Microbiana/métodos , Contagem de Colônia Microbiana/estatística & dados numéricos , Culinária , Escherichia coli , Microbiologia de Alimentos/estatística & dados numéricos , Conservação de Alimentos/métodos , Inocuidade dos Alimentos/métodos , Armazenamento de Alimentos/métodos , Listeria/isolamento & purificação , Nitrogênio , Salmonella/isolamento & purificação , Suínos
10.
Foods ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38790851

RESUMO

Despite significant efforts from government and industry, enteric foodborne diseases continue to pose a substantial public health challenge worldwide [...].

11.
Food Microbiol ; 33(2): 131-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23200644

RESUMO

Fresh-cut iceberg lettuce inoculated with Escherichia coli O157:H7 was submitted to chlorine washing (150 mg/mL) and modified atmosphere packaging on laboratory scale. Populations of E. coli O157:H7 were assessed in fresh-cut lettuce stored at 4, 8, 13 and 16 °C using 6-8 replicates in each analysis point in order to capture experimental variability. The pathogen was able to grow at temperatures ≥8 °C, although at low temperatures, growth data presented a high variability between replicates. Indeed, at 8 °C after 15 days, some replicates did not show growth while other replicates did present an increase. A growth primary model was fitted to the raw growth data to estimate lag time and maximum growth rate. The prediction and confidence bands for the fitted growth models were estimated based on Monte-Carlo method. The estimated maximum growth rates (log cfu/day) corresponded to 0.14 (95% CI: 0.06-0.31), 0.55 (95% CI: 0.17-1.20) and 1.43 (95% CI: 0.82-2.15) for 8, 13 and 16 °C, respectively. A square-root secondary model was satisfactorily derived from the estimated growth rates (R(2) > 0.80; Bf = 0.97; Af = 1.46). Predictive models and data obtained in this study are intended to improve quantitative risk assessment studies for E. coli O157:H7 in leafy green products.


Assuntos
Cloro/farmacologia , Escherichia coli O157/crescimento & desenvolvimento , Conservação de Alimentos/métodos , Lactuca/microbiologia , Desinfetantes/farmacologia , Escherichia coli O157/química , Escherichia coli O157/efeitos dos fármacos , Contaminação de Alimentos/economia , Contaminação de Alimentos/prevenção & controle , Cinética , Lactuca/economia , Modelos Biológicos , Embalagem de Produtos/economia
12.
Foods ; 12(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048199

RESUMO

Listeria monocytogenes is a foodborne pathogen characterized by its psychrotrophic and ubiquitous nature as well as its ability to survive and proliferate in a wide range of harsh environments and foods [...].

13.
Foods ; 12(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37959118

RESUMO

A survey was performed to gather information on the processing steps, conditions, and practices employed by industries processing ready-to-eat (RTE) leafy vegetables in Argentina. A total of seven industries participated in the survey. A cluster analysis of the data obtained was performed to identify homogeneous groups among the participating industries. The data collected were used as inputs of two predictive microbiology models to estimate Salmonella concentrations after chlorine washing, during storage and distribution of final products, and to rank the different practices according to the final estimated Salmonella levels. Six different clusters were identified by evaluating the parameters, methods, and controls applied in each processing step, evidencing a great variability among industries. The disinfectant agent applied by all participating industries was sodium hypochlorite, though concentrations and application times differed among industries from 50 to 200 ppm for 30 to 110 s. Simulations using predictive models indicated that the reductions in Salmonella in RTE leafy vegetables would vary in the range of 1.70-2.95 log CFU/g during chlorine-washing depending on chlorine concentrations applied, washing times, and vegetable cutting size, which varied from 9 to 16 cm2 among industries. Moreover, Salmonella would be able to grow in RTE leafy vegetables during storage and distribution, achieving levels of up to 2 log CFU/g, considering the storage and transportation temperatures and times reported by the industries, which vary from 4 to 14 °C and from 18 to 30 h. These results could be used to prioritize risk-based sampling programs by Food Official Control or determine more adequate process parameters to mitigate Salmonella in RTE leafy vegetables. Additionally, the information gathered in this study is useful for microbiological risk assessments.

14.
Food Res Int ; 167: 112451, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37087200

RESUMO

Fresh-cut produces are often consumed uncooked, thus proper sanitation is essential for preventing cross contamination. The reduction and subsequent growth of Salmonella enterica sv Thompson were studied in pre-cut iceberg lettuce washed with simulated wash water (SWW), sodium hypochlorite (SH, free chlorine 25 mg/L), and peroxyacetic acid (PAA, 80 mg/L) and stored for 9 days under modified atmosphere at 9, 13, and 18 °C. Differences in reduction between SH and PAA were non-existent. Overall, visual quality, dehydration, leaf edge and superficial browning and aroma during storage at 9 °C were similar among treatments, but negative effects increased with temperature. These results demonstrated that PAA can be used as an effective alternative to chlorine for the disinfection of Salmonella spp. in fresh-cut lettuce. The growth of Salmonella enterica sv Thompson was successfully described with the Baranyi and Roberts growth model in the studied storage temperature range, and after treatment with SWW, chlorine, and PAA. Subsequently, predictive secondary models were used to describe the relationship between growth rates and temperature based on the models' family described by Belehrádek. Interestingly, the exposure to disinfectants biased growth kinetics of Salmonella during storage. Below 12 °C, growth rates in lettuce treated with disinfectant (0.010-0.011 log CFU/h at 9 °C) were lower than those in lettuce washed with water (0.016 log CFU/h at 9 °C); whereas at higher temperatures, the effect was the opposite. Thus, in this case, the growth rate values registered at 18 °C for lettuce treated with disinfectant were 0.048-0.054 log CFU/h compared to a value of 0.038 log CFU/h for lettuce treated with only water. The data and models developed in this study will be crucial to describing the wash-related dynamics of Salmonella in a risk assessment framework applied to fresh-cut produce, providing more complete and accurate risk estimates.


Assuntos
Desinfetantes , Ácido Peracético , Ácido Peracético/farmacologia , Lactuca , Cloro/farmacologia , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Salmonella , Desinfetantes/farmacologia , Água
15.
Foods ; 12(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36981050

RESUMO

In this study, the growth of six L. monocytogenes strains isolated from different fish products was quantified and modeled in smoked salmon pâté at a temperature ranging from 2 to 20 °C. The experimental data obtained for each strain was fitted to the primary growth model of Baranyi and Roberts to estimate the following kinetic parameters: lag phase (λ), maximum specific growth rate (µmax), and maximum cell density (Nmax). Then, the effect of storage temperature on the obtained µmax values was modeled by the Ratkowsky secondary model. In general, the six L. monocytogenes strains showed rapid growth in salmon pâté at all storage temperatures, with a relatively short lag phase λ, even at 2 °C. The growth behavior among the tested strains was similar at the same storage temperature, although significant differences were found for the parameters λ and µmax. Besides, the growth variations among the strains did not follow a regular pattern. The estimated secondary model parameter Tmin ranged from -4.25 to -3.19 °C. This study provides accurate predictive models for the growth of L. monocytogenes in fish pâtés that can be used in shelf life and microbial risk assessment studies. In addition, the models generated in this work can be implemented in predictive modeling tools and repositories that can be reliably and easily used by the fish industry and end-users to establish measures aimed at controlling the growth of L. monocytogenes in fish-based pâtés.

16.
Animals (Basel) ; 13(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067017

RESUMO

Salmonellosis is globally recognized as one of the leading causes of acute human bacterial gastroenteritis resulting from the consumption of animal-derived products, particularly those derived from the poultry and pig industry. Salmonella spp. is generally associated with self-limiting gastrointestinal symptoms, lasting between 2 and 7 days, which can vary from mild to severe. The bacteria can also spread in the bloodstream, causing sepsis and requiring effective antimicrobial therapy; however, sepsis rarely occurs. Salmonellosis control strategies are based on two fundamental aspects: (a) the reduction of prevalence levels in animals by means of health, biosecurity, or food strategies and (b) protection against infection in humans. At the food chain level, the prevention of salmonellosis requires a comprehensive approach at farm, manufacturing, distribution, and consumer levels. Proper handling of food, avoiding cross-contamination, and thorough cooking can reduce the risk and ensure the safety of food. Efforts to reduce transmission of Salmonella by food and other routes must be implemented using a One Health approach. Therefore, in this review we provide an update on Salmonella, one of the main zoonotic pathogens, emphasizing its relationship with animal and public health. We carry out a review on different topics about Salmonella and salmonellosis, with a special emphasis on epidemiology and public health, microbial behavior along the food chain, predictive microbiology principles, antimicrobial resistance, and control strategies.

17.
Food Microbiol ; 30(1): 146-56, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22265295

RESUMO

The efficacy of an electrochemical treatment in water disinfection, using boron-doped diamond electrodes, was studied and its suitability for the fresh-cut produce industry analyzed. Tap water (TW), and tap water supplemented with NaCl (NaClW) containing different levels of organic matter (Chemical Oxygen Demand (COD) around 60, 300, 550 ± 50 and 750 ± 50 mg/L) obtained from lettuce, were inoculated with a cocktail of Escherichia coli O157:H7 at 105 cfu/mL. Changes in levels of E. coli O157:H7, free, combined and total chlorine, pH, oxidation-reduction potential, COD and temperature were monitored during the treatments. In NaClW, free chlorine was produced more rapidly than in TW and, as a consequence, reductions of 5 log units of E. coli O157:H7 were achieved faster (0.17, 4, 15 and 24 min for water with 60, 300, 500 and 750 mg/L of COD, respectively) than in TW alone (0.9, 25, 60 min and 90 min for water with 60, 300, 600 and 800 mg/L of COD, respectively). Nonetheless, the equipment showed potential for water disinfection and organic matter reduction even without adding NaCl. Additionally, different mathematical models were assessed to account for microbial inactivation curves obtained from the electrochemical treatments.


Assuntos
Desinfecção/métodos , Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Cloro , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Lactuca/microbiologia , Dinâmica não Linear , Microbiologia da Água/normas
18.
Food Sci Technol Int ; 28(8): 672-682, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34726103

RESUMO

The main objective of the present study was to investigate the effect of storage temperature on aerobically stored chicken meat spoilage using the two-step and one-step modelling approaches involving different primary models namely the modified Gompertz, logistic, Baranyi and Huang models. For this purpose, growth data points of Pseudomonas spp. were collected from published studies conducted in aerobically stored chicken meat product. Temperature-dependent kinetic parameters (maximum specific growth rate 'µmax' and lag phase duration 'λ') were described as a function of storage temperature through the Ratkowsky model based on the different primary models. Then, the fitting capability of both modelling approaches was compared taking into account root mean square error, adjusted coefficient of determination (adjusted-R2) and corrected Akaike information criterion. The one-step modelling approach showed considerably improved fitting capability regardless of the used primary model. Finally, models developed from the one-step modelling approach were validated for the maximum growth rate data extracted from independent published literature using the statistical indexes Bias (Bf) and Accuracy (Af) factors. The best prediction capability was obtained for the Baranyi model with Bf and Af being very close to 1. The shelf-life of chicken meat as a function of storage temperature was predicted using both modelling approaches for the Baranyi model.


Assuntos
Produtos da Carne , Pseudomonas , Animais , Cinética , Microbiologia de Alimentos , Galinhas , Modelos Biológicos , Temperatura , Carne , Contagem de Colônia Microbiana
19.
Int J Food Microbiol ; 383: 109932, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36182750

RESUMO

Invasive listeriosis is a potentially fatal foodborne disease that according to this study may affect up to 32.9 % of the US population considered as increased risk and including people with underlying conditions and co-morbidities. Listeria monocytogenes has been scrutinized in research and surveillance programs worldwide in Ready-to-Eat (RTE) food commodities (RTE salads, deli meats, soft/semi-soft cheese, seafood) and frozen vegetables in the last 30 years with an estimated overall prevalence of 1.4-9.9 % worldwide (WD) and 0.5-3.8 % in the United States (US). Current L. monocytogenes control efforts have led to a prevalence reduction in the last 5 years of 4.9-62.9 % (WD) and 12.4-92.7 % (US). A quantitative risk assessment model was developed, estimating the probability of infection in the US susceptible population to be 10-10,000× higher than general population and the total number of estimated cases in the US was 1044 and 2089 cases by using the FAO/WHO and Pouillot dose-response models. Most cases were attributed to deli meats (>90 % of cases) followed by RTE salads (3.9-4.5 %), soft and semi-soft cheese and RTE seafood (0.5-1.0 %) and frozen vegetables (0.2-0.3 %). Cases attributed to the increased risk population corresponded to 96.6-98.0 % of the total cases with the highly susceptible population responsible for 46.9-80.1 % of the cases. Removing product lots with a concentration higher than 1 CFU/g reduced the prevalence of contamination by 15.7-88.3 % and number of cases by 55.9-100 %. Introducing lot-by-lot testing and defining allowable quantitative regulatory limits for low-risk RTE commodities may reduce the public health impact of L. monocytogenes and improve the availability of enumeration data.


Assuntos
Listeria monocytogenes , Produtos da Carne , Humanos , Estados Unidos/epidemiologia , Saúde Pública , Microbiologia de Alimentos , Estudos Retrospectivos , Medição de Risco , Verduras
20.
Int J Food Microbiol ; 363: 109491, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34862040

RESUMO

Biopreservation is a strategy that has been extensively covered by the scientific literature from a variety of perspectives. However, the development of quantitative modelling approaches has received little attention, despite the usefulness of these tools for the food industry to assess the performance and to set the optimal application conditions. The objective of this study was to evaluate and model the interaction between the antilisteria strain Latilactobacillus sakei CTC494 (sakacin K producer) and Listeria monocytogenes in vacuum-packaged sliced cooked ham. Cooked ham was sliced under aseptic conditions and inoculated with L. monocytogenes CTC1034 and/or L. sakei CTC494 in monoculture and coculture at 10:10, 10:103 and 10:105 cfu/g ratios of pathogen:bioprotective cultures. Samples were vacuum packaged and stored at isothermal temperature (2, 5, 10 and 15 °C). The growth of the two bacteria was monitored by plate counting. The Logistic growth model was applied to estimate the growth kinetic parameters (N0, λ, µmax, Nmax). The effect of storage temperature was modelled using the hyperbola (λ) and Ratkowsky (µmax) models. The simple Jameson-effect model, its modifications including the Ncri and the interaction γ factor, and the predator-prey Lotka Volterra model were used to characterize the interaction between both microorganisms. Two additional experiments at non-isothermal temperature conditions were also carried out to assess the predictive performance of the developed models through the Acceptable Simulation Zone (ASZ) approach. In monoculture conditions, L. monocytogenes and L. sakei CTC494 grew at all temperatures. In coculture conditions, L. sakei CTC494 had an inhibitory effect on L. monocytogenes by lowering the Nmax, especially with increasing levels of L. sakei CTC494 and lowering the storage temperature. At the lowest temperature (2 °C) L. sakei CTC494 was able to completely inhibit the growth of L. monocytogenes when added at a concentration 3 and 5 Log higher than that of the pathogen. The inhibitory effect of the L. sakei CTC494 against L. monocytogenes was properly characterized and modelled using the modified Jameson-effect with interaction γ factor model. The developed interaction model was tested under non-isothermal conditions, resulting in ASZ values ≥83%. This study shows the potential of L. sakei CTC494 in the biopreservation of vacuum-packaged cooked ham against L. monocytogenes. The developed interaction model can be useful for the industry as a risk management tool to assess and set biopreservation strategies for the control of L. monocytogenes in cooked ham.


Assuntos
Latilactobacillus sakei , Listeria monocytogenes , Produtos da Carne , Contagem de Colônia Microbiana , Culinária , Microbiologia de Alimentos , Embalagem de Alimentos , Conservação de Alimentos , Modelos Teóricos , Temperatura , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA