Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 38(2): 301-317, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33608808

RESUMO

PURPOSE: Folic acid-doxorubicin-double-functionalized-lipid-core nanocapsules (LNC-CS-L-Zn+2-DOX-FA) were prepared, characterized, and evaluated in vitro against ovarian and bladder cancer cell lines (OVCAR-3 and T24). METHODS: LNC-CS-L-Zn+2-DOX-FA was prepared by self-assembly and interfacial reactions, and characterized using liquid chromatography, particle sizing, transmission electron microscopy, and infrared spectroscopy. Cell viability and cellular uptake were studied using MTT assay and confocal microscopy. RESULTS: The presence of lecithin allows the formation of nanocapsules with a lower tendency of agglomeration, narrower size distributions, and smaller diameters due to an increase in hydrogen bonds at the surface. LNC-L-CS-Zn+2-DOX-FA, containing 98.00 ± 2.34 µg mL-1 of DOX and 105.00 ± 2.05 µg mL-1 of FA, had a mean diameter of 123 ± 4 nm and zeta potential of +12.0 ± 1.3 mV. After treatment with LNC-L-CS-Zn+2-DOX-FA (15 µmol L-1 of DOX), T24 cells had inhibition rates above 80% (24 h) and 90% (48 h), whereas OVCAR-3 cells showed inhibition rates of 68% (24 h) and 93% (48 h), showing higher cytotoxicity than DOX.HCl. The fluorescent-labeled formulation showed a higher capacity of internalization in OVCAR-3 compared to T24 cancer cells. CONCLUSION: Lecithin favored the increase of hydrogen bonds at the surface, leading to a lower tendency of agglomeration for nanocapsules. LNC-CS-L-Zn+2-DOX-FA is a promising therapeutic agent against tumor-overexpressing folate receptors.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Nanocápsulas/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ácido Fólico/química , Humanos , Lecitinas/química , Neoplasias Ovarianas/patologia , Tamanho da Partícula , Neoplasias da Bexiga Urinária/patologia
2.
Eur J Pharm Sci ; 165: 105943, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260893

RESUMO

Breast cancer is the most common cancers among women and is one of the main causes of morbidity and mortality in this population. In this study, we aimed to conjugate doxorubicin (DOX), a drug widely used in cancer chemotherapy, and folic acid (FA), a ligand targeted for cancer therapy, to lipid-core nanocapsules (LNC), and evaluate the efficacy of the nanoformulation against triple-negative breast cancer (TNBC) MDA-MB-231 cells that overexpress folate receptors (FRs). We performed cell viability assays, quantitative real-time PCR (qRT-PCR), cell migration assay, and clonogenic assay, as well as measured the levels of nitric oxide (NO) generated and cellular uptake. The results showed that the nanoformulation reduced cell viability. The results of qRT-PCR analysis revealed that the nanoformulation induced apoptosis of MDA-MB-231 cells. The mRNA expression levels of Cat and MnSod were increased when the nanoformulation was compared to the doxorubicin solution. Furthermore, the nanoformulation significantly decreased the migration of breast cancer cells in vitro and inhibited colony formation. Additionally, the expression of iNOS in MDA-MB-231 cells was higher when the nanoformulation was used compared to the doxorubicin solution. Cellular uptake was observed after incubating the MDA-MB-231 cells with the fluorescent-labeled nanoformulation. In conclusion, we developed a promising nanoformulation for the treatment of TNBC. Further studies are necessary to demonstrate the in vivo efficacy of this formulation.


Assuntos
Nanocápsulas , Neoplasias de Mama Triplo Negativas , Apoptose , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Ácido Fólico , Humanos , Nanocápsulas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA