RESUMO
Precise control of light is indispensable to modern optical communication devices especially as the size of such devices approaches the subwavelength scale. Plasmonic devices are suitable for the development of these optical devices due to the extreme field confinement and its ability to be controlled by tuning the carrier density at the metal/dielectric interface. Here, an electro-ionic controlled plasmonic device consisting of Au/graphene/ion-gel is demonstrated as an optical switch, where an external electric field modulates the real part of the electrical conductivity. The graphene layer enhances charge penetration and charge separation at the Au/graphene interface resulting in an increased photoinduced voltage. The ion-gel immobilized on the Au/graphene further enables the electrical tunability of plasmons which modulates the intensity of the reflected laser light. This work paves the way for developing novel plasmonic electro-optic switches for potential applications such as integrated optical devices.
RESUMO
A theoretical model based on the coupled mode theory is presented to calculate the absorption in a graphene embedded 1D guided-mode-resonance (GMR) structure that does not require a back reflector. The optimized graphene-GMR structure can absorb up to 70% of the incident light which far exceeds the already reported results without using any back-metal reflector or Bragg mirror. The theoretical analysis is valid for binary gratings and pyramidal gratings which are patterned using an interference lithography system. We experimentally validate our theoretical results and analyze the influence of the geometrical parameters to achieve critical coupling for the enhanced absorption.