Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
FASEB J ; 33(6): 7707-7720, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30897345

RESUMO

Peroxisome proliferator-activated receptor (PPAR)-γ has been implicated as a key player in the regulation of adiponectin levels via both transcriptional and posttranscriptional mechanisms. Herein, we show that PPAR-γ interacts with human antigen R (HuR) and that the PPAR-γ-HuR complex dissociates following activation of PPAR-γ by rosiglitazone, a specific ligand of PPAR-γ. This rosiglitazone-dependent dissociation of HuR from PPAR-γ leads to nucleocytoplasmic shuttling of HuR and its binding to the 3'-UTR of adiponectin mRNA. PPAR-γ with H321A and H447A double mutation (PPAR-γH321/447A), a mutant lacking ligand-binding activity, impaired HuR dissociation from the PPAR-γ-HuR complex, resulting in reduced nucleocytoplasmic shuttling, even in the presence of rosiglitazone. Consequently, rosiglitazone up-regulated adiponectin levels by modulating the stability of adiponectin mRNA, whereas these effects were abolished by HuR ablation or blocked in cells expressing the PPAR-γH321/447A mutant, indicating that the interaction of PPAR-γ and HuR is a critical event during adiponectin expression. Taken together, the findings demonstrate a novel mechanism for regulating adiponectin expression at the posttranscriptional level and suggest that ligand-mediated activation of PPAR-γ to interfere with interaction of HuR could offer a therapeutic strategy for inflammation-associated diseases that involve decreased adiponectin mRNA stability.-Hwang, J. S., Lee, W. J., Hur, J., Lee, H. G., Kim, E., Lee, G. H., Choi, M.-J., Lim, D.-S., Paek, K. S., Seo, H. G. Rosiglitazone-dependent dissociation of HuR from PPAR-γ regulates adiponectin expression at the posttranscriptional level.


Assuntos
Adiponectina/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , PPAR gama/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Rosiglitazona/farmacologia , Adiponectina/genética , Animais , Linhagem Celular , Humanos , Ligantes , Ligação Proteica , Transcrição Gênica
2.
J Neurochem ; 151(3): 370-385, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31063584

RESUMO

Neuronal expression of beta-secretase 1 (BACE1) has been implicated in the progression of Alzheimer's disease. However, the mechanisms that regulate BACE1 expression are unclear. Here, we show that peroxisome proliferator-activated receptor delta (PPARδ) decreases BACE1 expression by up-regulating suppressor of cytokine signaling 1 (SOCS1) in SH-SY5Y neuroblastoma cells. The activation of PPARδ by GW501516, a specific PPARδ agonist, inhibited expression of BACE1. This effect was abrogated by shRNA-mediated knockdown of PPARδ and by treatment with the PPARδ antagonist GSK0660, indicating that PPARδ is involved in GW501516-mediated suppression of BACE1 expression. On the other hand, GW501516-activated PPARδ induced expression of SOCS1, which is a negative regulator of cytokine signal transduction, at the transcriptional level by binding to a PPAR response element in its promoter. This GW501516-mediated induction of SOCS1 expression led to down-regulation of BACE1 expression via inactivation of signal transducer and activator of transcription 1. GW501516-activated PPARδ suppressed the generation of neurotoxic amyloid beta (Aß) in accordance with the decrease in BACE1 expression. Taken together, these results indicate that PPARδ attenuates BACE1 expression via SOCS1-mediated inhibition of signal transducer and activator of transcription 1 signaling, thereby suppressing BACE1-associated generation of neurotoxic Aß.


Assuntos
Secretases da Proteína Precursora do Amiloide/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/efeitos dos fármacos , Proteína 1 Supressora da Sinalização de Citocina/efeitos dos fármacos , Tiazóis/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Janus Quinase 2/efeitos dos fármacos , Janus Quinase 2/metabolismo , Fator de Transcrição STAT1/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Regulação para Cima
3.
J Cell Biochem ; 119(7): 5609-5619, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29388693

RESUMO

Neuroinflammation-associated release of glutamate from activated microglia has been implicated in the progression of neurodegenerative diseases. However, the regulatory mechanisms underlying this glutamate release are poorly understood. Here, we show that peroxisome proliferator-activated receptor delta (PPARδ) modulates neurotoxicity by inhibiting glutamate release in lipopolysaccharide (LPS)-activated BV-2 microglial cells. Activation of PPARδ by GW501516, a specific PPARδ agonist, inhibited glutamate release in BV-2 cells. This effect of GW501516 was significantly blocked by shRNA-mediated knockdown of PPARδ and by treatment with GSK0660, a specific PPARδ antagonist, indicating that PPARδ is associated with blockade of glutamate release. Additionally, GW501516-activated PPARδ suppressed generation of reactive oxygen species and expression of gp91phox, a functional subunit of NADPH oxidase 2, in BV-2 cells stimulated with LPS. The inhibitory effect of GW501516 on gp91phox expression and glutamate release was further potentiated in the presence of AG490, a specific inhibitor of janus kinase 2 (JAK2), leading to the inhibition of signal transducer and activator of transcription 1 (STAT1). By contrast, GW501516 upregulated the expression of suppressor of cytokine signaling 1 (SOCS1), an endogenous inhibitor of JAK2. Furthermore, neurotoxicity induced by conditioned media from LPS-stimulated BV-2 cells was significantly reduced when conditioned media from BV-2 cells treated with both LPS and GW501516 were used. These results indicate that PPARδ attenuates LPS-triggered neuroinflammation by enhancing SOCS1-mediated inhibition of JAK2/STAT1 signaling, thereby inhibiting neurotoxicity associated with glutamate release.


Assuntos
Ácido Glutâmico/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Síndromes Neurotóxicas/tratamento farmacológico , PPAR delta/agonistas , Tiazóis/farmacologia , Animais , Células Cultivadas , Janus Quinase 2/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , PPAR delta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
4.
Int J Cancer ; 143(11): 2985-2996, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30204243

RESUMO

Peroxisome proliferator-activated receptor (PPAR) δ is a promising therapeutic target in metabolic and inflammatory disorders. However, its role in oncogenesis is controversial, and its therapeutic potential remains to be determined. In our study, we show that ligand-activated PPARδ forms a complex with the proto-oncogene product c-Myc. The interaction of PPARδ with c-Myc affected the transcriptional activity of c-Myc and the expression of its target genes. The PPARδ-dependent regulation of c-Myc activity was associated with decreased tumorigenicity in breast cancer cells. Administration of the PPARδ ligand GW501516 inhibited tumor growth in xenograft model mice bearing MDA-MB-231 cells stably expressing wild-type PPARδ, but not those expressing dominant-negative PPARδ, by interfering with c-Myc function through protein-protein interaction. Our results indicating that PPARδ forms an antitumorigenic complex with c-Myc in the presence of ligand suggest a potential role of PPARδ in breast cancer development.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , PPAR delta/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Tiazóis/farmacologia , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Ligantes , Células MCF-7 , Células PC12 , Proto-Oncogene Mas , RNA Interferente Pequeno/metabolismo , Ratos
5.
J Vasc Res ; 55(2): 75-86, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29408825

RESUMO

Thrombospondin-1 (TSP-1) is implicated in vascular diseases associated with oxidative stress, such as abdominal aortic aneurysms, ischemia-reperfusion injury, and atherosclerosis. However, the regulatory mechanisms underlying TSP-1 expression are not fully elucidated. In this study, we found that peroxisome proliferator-activated receptor δ (PPARδ) inhibited oxidative stress-induced TSP-1 expression and migration in vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly attenuated hydrogen peroxide (H2O2)-induced expression of TSP-1 in VSMCs. Small interfering RNA-mediated knockdown of PPARδ and treatment with GSK0660, a selective PPARδ antagonist, reversed the effect of GW501516 on H2O2-induced expression of TSP-1, suggesting that PPARδ is associated with GW501516 activity. Furthermore, JNK (c-Jun N-terminal kinase), but not p38 and ERK (extracellular signal-regulated kinase), mediated PPARδ-dependent inhibition of TSP-1 expression in VSMCs exposed to H2O2. GW501516- activated PPARδ also reduced the H2O2-induced generation of reactive oxygen species, concomitant with inhibition of VSMC migration. In particular, TSP-1 contributed to the action of PPARδ in the regulation of H2O2-induced interleukin-1ß expression. These results suggest that PPARδ-modulated downregulation of TSP-1 is associated with reduced cellular oxidative stress, thereby inhibiting H2O2-induced pheno-typic changes in vascular cells.


Assuntos
Antioxidantes/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , PPAR delta/agonistas , Tiazóis/farmacologia , Trombospondina 1/metabolismo , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/farmacologia , Interleucina-1beta/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
6.
BMC Complement Altern Med ; 17(1): 212, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28403838

RESUMO

BACKGROUND: Dalbergia odorifera T. Chen (Leguminosae) is an indigenous medicinal herb that is widely used as a popular remedy in northern and eastern Asia. However, the cellular mechanisms underlying the biological activity of D. odorifera are not fully elucidated. METHODS: Anti-inflammatory effect of D. odorifera extract (DOE) was determined through intraperitoneal injection in a mouse model of endotoxemia induced by lipopolysaccharide (LPS). RAW 264.7 cells, a murine macrophage, were also treated with LPS to generate a cellular model of inflammation, and investigated the anti-inflammatory activity and underlying mechanisms of DOE and its constituent isoliquiritigenin. RESULTS: DOE dose-dependently inhibited LPS-induced release of high mobility group box 1 (HMGB1), a late proinflammatory cytokine, and decreased cytosolic translocation of HMGB1 in RAW264.7 cells. This inhibitory effect of DOE on HMGB1 release was observed in cells treated with DOE before or after LPS treatment, suggesting that DOE is effective for both treatment and prevention. In addition, DOE significantly inhibited LPS-induced formation of nitric oxide (NO) and expression of inducible NO synthase (iNOS) in a dose-dependent manner. These effects of DOE were accompanied by suppression of HMGB1 release triggered by LPS, suggesting a possible mechanism by which DOE modulates HMGB1 release through NO signaling. Isoriquiritigenin, a constituent of DOE, also attenuated LPS-triggered NO formation and HMGB1 release in RAW264.7 cells, indicating that isoriquiritigenin is an indexing molecule for the anti-inflammatory properties of DOE. Furthermore, c-Jun N-terminal kinase, but not extracellular signal-regulated kinase and p38, mediated DOE-dependent inhibition of HMGB1 release and NO/iNOS induction in RAW 264.7 cells exposed to LPS. Notably, administration of DOE ameliorated survival rates in a mouse model of endotoxemia induced by LPS, where decreased level of circulating HMGB1 was observed. CONCLUSION: These results suggest that DOE confers resistance to LPS-triggered inflammation through NO-mediated inhibitory effects on HMGB1 release.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Dalbergia/química , Endotoxemia/tratamento farmacológico , Proteína HMGB1/antagonistas & inibidores , Fitoterapia , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/isolamento & purificação , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
7.
Mol Pharmacol ; 90(5): 522-529, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27573670

RESUMO

Peroxisome proliferator-activated receptor δ (PPARδ) has been implicated in vascular pathophysiology. However, its functions in atherogenic changes of the vascular wall have not been fully elucidated. PPARδ activated by GW501516 (2-[2-methyl-4-[[4-methyl-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-yl]methylsulfanyl]phenoxy]acetic acid) significantly inhibited the migration and proliferation of vascular smooth muscle cells (VSMCs) triggered by oxidized low-density lipoprotein (oxLDL). These GW501516-mediated effects were significantly reversed by PPARδ-targeting small-interfering RNA (siRNA), indicating that PPARδ is involved in the action of GW501516. The antiproliferative effect of GW501516 was directly linked to cell cycle arrest at the G0/G1 to S phase transition, which was followed by the down-regulation of cyclin-dependent kinase 4 along with increased levels of p21 and p53. In VSMCs treated with GW501516, the expression of sirtuin 1 (SIRT1) mRNA and protein was time-dependently increased. This GW501516-mediated up-regulation of SIRT1 expression was also demonstrated even in the presence of oxLDL. In addition, GW501516-dependent inhibition of oxLDL-triggered migration and proliferation of VSMCs was almost completely abolished in the presence of SIRT1-targeting siRNA. These effects of GW501516 on oxLDL-triggered phenotypic changes of VSMCs were also demonstrated via activation or inhibition of SIRT1 activity by resveratrol or sirtinol, respectively. Finally, gain or loss of SIRT1 function imitated the action of PPARδ on oxLDL-triggered migration and proliferation of VSMCs. Taken together, these observations indicate that PPARδ-dependent up-regulation of SIRT1 contributes to the antiatherogenic activities of PPARδ by suppressing the migration and proliferation of VSMCs linked to vascular diseases such as restenosis and atherosclerosis.


Assuntos
Movimento Celular/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , PPAR delta/metabolismo , Sirtuína 1/metabolismo , Adenoviridae/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Miócitos de Músculo Liso/efeitos dos fármacos , Interferência de RNA/efeitos dos fármacos , Ratos , Tiazóis
8.
Pharmacol Res ; 114: 47-55, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27771463

RESUMO

Silent mating type information regulation 2 homolog 1 (SIRT1), a NAD-dependent deacetylase, mediates cellular processes involved in gene silencing and aging. The regulation of lifespan by SIRT1 has been extensively investigated, but less is known about the mechanisms associated with its cellular turnover during inflammatory responses. In this study, we found that peroxisome proliferator-activated receptor (PPAR) γ is associated with SIRT1 stability in murine macrophage RAW 264.7 cells exposed to lipopolysaccharide (LPS). Activation of PPARγ by rosiglitazone, a specific ligand of PPARγ, rescues LPS-induced destabilization of SIRT1, with a concomitant decrease in phosphorylation of residue Ser-46, which is targeted by JNK-1 to promote proteasome-mediated degradation of SIRT1. The rosiglitazone-mediated increase in SIRT1 stability is accompanied by upregulation of mitogen-activated protein kinase phosphatase (MKP)-7, a JNK-specific phosphatase. These effects are significantly influenced by ablation or ectopic expression of PPARγ, indicating that PPARγ is directly involved in the regulation of SIRT1 stability. Furthermore, gain of MKP-7 function mimicked the effect of rosiglitazone on LPS-induced destabilization and ubiquitination of SIRT1. These results indicate that PPARγ-dependent upregulation of MKP-7 improves the stability of SIRT1 by inactivating JNK during inflammatory responses of LPS-activated macrophages.


Assuntos
Fosfatases de Especificidade Dupla/imunologia , Hipoglicemiantes/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Fosfatases da Proteína Quinase Ativada por Mitógeno/imunologia , Sirtuína 1/imunologia , Tiazolidinedionas/farmacologia , Animais , Células CHO , Cricetulus , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/imunologia , PPAR gama/imunologia , Proteólise/efeitos dos fármacos , Células RAW 264.7 , Rosiglitazona , Sirtuína 1/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Biosci Biotechnol Biochem ; 79(5): 760-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25560618

RESUMO

Dalbergia odorifera T. Chen (Leguminosae), an indigenous medicinal herb, has been widely used in northern and eastern Asia to treat diverse diseases. Here, we investigated the anti-senescent effects of ethanolic extracts of Dalbergia odorifera (EEDO) in ultraviolet (UV) B-irradiated skin cells. EEDO significantly inhibited UVB-induced senescence of human keratinocytes in a concentration-dependent manner, concomitant with inhibition of reactive oxygen species (ROS) generation. UVB-induced increases in the levels of p53 and p21, biomarkers of cellular senescence, were almost completely abolished in the presence of EEDO. Sativanone, a major constituent of EEDO, also attenuated UVB-induced senescence and ROS generation in keratinocytes, indicating that sativanone is an indexing (marker) molecule for the anti-senescence properties of EEDO. Finally, treatment of EEDO to mice exposed to UVB significantly reduced ROS levels and the number of senescent cells in the skin. Thus, EEDO confers resistance to UVB-induced cellular senescence by inhibiting ROS generation in skin cells.


Assuntos
Dalbergia/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Extratos Vegetais/farmacologia , Animais , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Criança , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Etanol/química , Humanos , Isoflavonas/química , Isoflavonas/farmacologia , Camundongos Pelados , Extratos Vegetais/química , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio , Pele/citologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Protetores Solares/farmacologia , Raios Ultravioleta/efeitos adversos
10.
Drug Dev Res ; 76(1): 48-56, 2015 02.
Artigo em Inglês | MEDLINE | ID: mdl-25620496

RESUMO

Preclinical Research Emerging evidence suggests that Dalbergia odorifera T. Chen (Leguminosae), an indigenous medicinal herb, has therapeutic potential. This study examined the antiwrinkle effects of ethanol extracts of D. odorifera in UVB-irradiated human skin cells. Ethanol extracts of D. odorifera and thier constituents, dalbergin and sativanone, induced expression of collagen type I and transforming growth factor (TGF)-ß1 in human dermal fibroblasts. In HR-1 hairless mice exposed to UVB, the ethanol extract reduced wrinkle formation and skin thickness. This inhibitory effect of ethanol extract was associated with the restoration of collagen type I, TGF-ß1, and elastin to levels approaching those in skin tissues not exposed to UVB, which was accompanied by the reduction of matrix metalloproteinase-2 and upregulation of tissue inhibitors of metalloproteinase (TIMP)-2 and TIMP-3 in skin tissue exposed to UVB. These results suggest that the ethanol extracts prevent some effects of photoaging and maintain skin integrity by regulating the degradation of the extracellular matrix proteins. © 2015 Wiley Periodicals, Inc.

11.
J Vasc Res ; 51(3): 221-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25116733

RESUMO

We investigated the role of peroxisome proliferator-activated receptor (PPAR) δ on angiotensin (Ang) II-induced activation of matrix metalloproteinase (MMP)-2 in vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, attenuated Ang II-induced activation of MMP-2 in a concentration-dependent manner. GW501516 also inhibited the generation of reactive oxygen species in VSMCs treated with Ang II. A marked increase in the mRNA levels of tissue inhibitor of metalloproteinase (TIMP)-2 and -3, endogenous antagonists of MMPs, was also observed in GW501516-treated VSMCs. These effects were markedly reduced in the presence of siRNAs against PPARδ, indicating that the effects of GW501516 are PPARδ dependent. Among the protein kinases inhibited by GW501516, suppression of phosphatidylinositol 3-kinase/Akt signaling was shown to have the greatest effect on activation of MMP-2 in VSMCs treated with Ang II. Concomitantly, GW501516-mediated inhibition of MMP-2 activation in VSMCs treated with Ang II was associated with the suppression of cell migration to levels approaching those in cells not exposed to Ang II. Thus, activation of PPARδ confers resistance to Ang II-induced degradation of the extracellular matrix by upregulating expression of its endogenous inhibitor TIMP and thereby modulating cellular responses to Ang II in vascular cells.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Miócitos de Músculo Liso/metabolismo , PPAR delta/metabolismo , Angiotensina II/farmacologia , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Masculino , Músculo Liso Vascular/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Transdução de Sinais/efeitos dos fármacos , Tiazóis
12.
J Biol Chem ; 286(52): 44585-93, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22072715

RESUMO

Cellular senescence-associated changes in blood vessels have been implicated in aging and age-related cardiovascular disorders. Here, we demonstrate that peroxisome proliferator-activated receptor (PPAR) δ coordinates angiotensin (Ang) II-induced senescence of human vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly attenuated Ang II-induced generation of superoxides and suppressed senescence of VSMCs. A marked increase in the levels of p53 and p21 induced by Ang II was blunted by the treatment with GW501516. Ligand-activated PPARδ up-regulated expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and suppressed the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Knockdown of PTEN with siRNA abrogated the effects of PPARδ on cellular senescence, on PI3K/Akt signaling, and on generation of ROS in VSMCs treated with Ang II. Finally, administration of GW501516 to apoE-deficient mice treated with Ang II significantly reduced the number of senescent cells in the aorta, where up-regulation of PTEN with reduced levels of phosphorylated Akt and ROS was demonstrated. Thus, ligand-activated PPARδ confers resistance to Ang II-induced senescence by up-regulation of PTEN and ensuing modulation of the PI3K/Akt signaling to reduce ROS generation in vascular cells.


Assuntos
Angiotensina II/metabolismo , Senescência Celular/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Superóxidos/metabolismo , Substituição de Aminoácidos , Angiotensina II/genética , Animais , Aorta/citologia , Aorta/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Mutantes , Músculo Liso Vascular/citologia , Mutação de Sentido Incorreto , Miócitos de Músculo Liso/citologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Mediators Inflamm ; 2012: 352807, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23316104

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are shown to modulate the pathological status of sepsis by regulating the release of high mobility group box 1 (HMGB1), a well-known late proinflammatory mediator of sepsis. Ligand-activated PPARs markedly inhibited lipopolysaccharide- (LPS) induced release of HMGB1 in RAW 264.7 cells. Among the ligands of PPAR, the effect of rosiglitazone, a specific ligand for PPARγ, was superior in the inhibition of HMGB1 release induced by LPS. This effect was observed in cells that received rosiglitazone before LPS or after LPS treatment, indicating that rosiglitazone is effective in both treatment and prevention. Ablation of PPARγ with small interfering RNA or GW9662-mediated inhibition of PPARγ abolished the effect of rosiglitazone on HMGB1 release. Furthermore, the overexpression of PPARγ markedly potentiated the inhibitory effect of rosiglitazone on HMGB1 release. In addition, rosiglitazone inhibited LPS-induced expression of Toll-like receptor 4 signal molecules, suggesting a possible mechanism by which rosiglitazone modulates HMGB1 release. Notably, the administration of rosiglitazone to mice improved survival rates in an LPS-induced animal model of endotoxemia, where reduced levels of circulating HMGB1 were demonstrated. Taken together, these results suggest that PPARs play an important role in the cellular response to inflammation by inhibiting HMGB1 release.


Assuntos
Proteína HMGB1/metabolismo , Hipoglicemiantes/farmacologia , Lipopolissacarídeos/farmacologia , PPAR gama/fisiologia , Tiazolidinedionas/farmacologia , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , PPAR gama/efeitos dos fármacos , Poli I-C/farmacologia , Rosiglitazona , Receptor 4 Toll-Like/antagonistas & inibidores
14.
Biochem Biophys Res Commun ; 406(4): 564-9, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21352808

RESUMO

This study evaluated peroxisome proliferator-activated receptor (PPAR) δ as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPARδ by GW501516, a specific agonist of PPARδ, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPARδ suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPARδ-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.


Assuntos
Senescência Celular/genética , Regulação da Expressão Gênica , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , PPAR delta/fisiologia , Angiotensina II/farmacologia , Angiotensina II/fisiologia , Senescência Celular/efeitos dos fármacos , Dano ao DNA/genética , Glutationa Peroxidase/genética , Heme Oxigenase-1/genética , Humanos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , PPAR delta/agonistas , PPAR delta/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Tiazóis/farmacologia , Tiorredoxinas/genética , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima , Glutationa Peroxidase GPX1
15.
PLoS One ; 14(1): e0210482, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30620754

RESUMO

We investigated the effect of peroxisome proliferator-activated receptor δ (PPARδ) on angiotensin II (Ang II)-triggered hypertrophy of vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand of PPARδ, significantly inhibited Ang II-stimulated protein synthesis in a concentration-dependent manner, as determined by [3H]-leucine incorporation. GW501516-activated PPARδ also suppressed Ang II-induced generation of reactive oxygen species (ROS) in VSMCs. Transfection of small interfering RNA (siRNA) against PPARδ significantly reversed the effects of GW501516 on [3H]-leucine incorporation and ROS generation, indicating that PPARδ is involved in these effects. By contrast, these GW501516-mediated actions were potentiated in VSMCs transfected with siRNA against NADPH oxidase (NOX) 1 or 4, suggesting that ligand-activated PPARδ elicits these effects by modulating NOX-mediated ROS generation. The phosphatidylinositol 3-kinase inhibitor LY294002 also inhibited Ang II-stimulated [3H]-leucine incorporation and ROS generation by preventing membrane translocation of Rac1. These observations suggest that PPARδ is an endogenous modulator of Ang II-triggered hypertrophy of VSMCs, and is thus a potential target to treat vascular diseases associated with hypertrophic changes of VSMCs.


Assuntos
Angiotensina II/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , PPAR delta/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Animais , Crescimento Celular/efeitos dos fármacos , Células Cultivadas , Hipertrofia , Ligantes , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 1/genética , NADPH Oxidase 1/metabolismo , PPAR delta/agonistas , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Ratos , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/metabolismo , Tiazóis/farmacologia , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
PeerJ ; 6: e4208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29312829

RESUMO

BACKGROUND: The release of high mobility group box 1 (HMGB1) induced by inflammatory signals acts as a cellular alarmin to trigger a chain of inflammatory responses. Although the inflammatory actions of HMGB1 are well studied, less is known about the therapeutic agents that can impede its release. This study investigated whether the isoflavonoid formononetin can modulate HMGB1 release in cellular inflammatory responses. METHODS: RAW264.7 murine macrophages were exposed to lipopolysaccharide (LPS) in the presence or absence of formononetin. The levels of HMGB1 release, sirtuin 1 (SIRT1) expression, and HMGB1 acetylation were analyzed by immunoblotting and real-time polymerase chain reaction. The effects of resveratrol and sirtinol, an activator and inhibitor of SIRT1, respectively, on LPS-induced HMGB1 release were also evaluated. RESULTS: Formononetin modulated cellular inflammatory responses by suppressing the release of HMGB1 by macrophages exposed to LPS. In RAW264.7 cells, formononetin significantly attenuated LPS-induced release of HMGB1 into the extracellular environment, which was accompanied by a reduction in its translocation from the nucleus to the cytoplasm. In addition, formononetin significantly induced mRNA and protein expression of SIRT1 in a peroxisome proliferator-activated receptor δ (PPARδ)-dependent manner. These effects of formononetin were dramatically attenuated in cells treated with small interfering RNA (siRNA) against PPARδ or with GSK0660, a specific inhibitor of PPARδ, indicating that PPARδ is involved in formononetin-mediated SIRT1 expression. In line with these effects, formononetin-mediated inhibition of HMGB1 release in LPS-treated cells was reversed by treatment with SIRT1-targeting siRNA or sirtinol, a SIRT1 inhibitor. By contrast, resveratrol, a SIRT1 activator, further potentiated the inhibitory effect of formononetin on LPS-induced HMGB1 release, revealing a possible mechanism by which formononetin regulates HMGB1 release through SIRT1. Furthermore, modulation of SIRT1 expression by transfection of SIRT1- or PPARδ-targeting siRNA significantly counteracted the inhibitory effects of formononetin on LPS-induced HMGB1 acetylation, which was responsible for HMGB1 release. DISCUSSION: This study shows for the first time that formononetin inhibits HMGB1 release by decreasing HMGB1 acetylation via upregulating SIRT1 in a PPARδ-dependent manner. Formononetin consequently exhibits anti-inflammatory activity. Identification of agents, such as formononetin, which can block HMGB1 release, may help to treat inflammation-related disorders.

17.
Diabetes ; 67(3): 360-371, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29233935

RESUMO

Peroxisome proliferator-activated receptor (PPAR) δ plays a pivotal role in metabolic homeostasis through its effect on insulin signaling. Although diverse genomic actions of PPARδ are postulated, the specific molecular mechanisms whereby PPARδ controls insulin signaling have not been fully elucidated. We demonstrate here that short-term activation of PPARδ results in the formation of a stable complex with nuclear T-cell protein tyrosine phosphatase 45 (TCPTP45) isoform. This interaction of PPARδ with TCPTP45 blocked translocation of TCPTP45 into the cytoplasm, thereby preventing its interaction with the insulin receptor, which inhibits insulin signaling. Interaction of PPARδ with TCPTP45 blunted interleukin 6-induced insulin resistance, leading to retention of TCPTP45 in the nucleus, thereby facilitating deactivation of the signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3) signal. Finally, GW501516-activated PPARδ improved insulin signaling and glucose intolerance in mice fed a high-fat diet through its interaction with TCPTP45. This novel interaction of PPARδ constitutes the most upstream component identified of the mechanism downregulating insulin signaling.


Assuntos
Intolerância à Glucose/prevenção & controle , Hepatócitos/efeitos dos fármacos , Resistência à Insulina , Obesidade/tratamento farmacológico , PPAR delta/agonistas , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Tiazóis/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/imunologia , Adipócitos Brancos/metabolismo , Adipócitos Brancos/patologia , Processamento Alternativo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Linhagem Celular , Células Cultivadas , Intolerância à Glucose/etiologia , Intolerância à Glucose/imunologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Camundongos Endogâmicos ICR , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/imunologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , PPAR delta/antagonistas & inibidores , PPAR delta/genética , PPAR delta/metabolismo , Multimerização Proteica/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 2/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Organismos Livres de Patógenos Específicos , Tiazóis/uso terapêutico
18.
Free Radic Biol Med ; 43(4): 535-45, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17640564

RESUMO

Up-regulation of aldose reductase (AR) by reactive oxygen species (ROS) and aldehyde derivatives has been observed in vascular smooth muscle cells. However, the pathophysiological consequences of the induction of AR in vascular tissues are not fully elucidated. Herein we report that an herb-derived polyphenolic compound, curcumin, elicited a dose- and time-dependent increase in AR expression. Inhibition of phosphatidylinositol 3-kinase (PI3K) and p38 mitogen-activated protein kinase (MAPK) significantly suppressed the curcumin-augmented mRNA levels and promoter activity of the AR gene. Luciferase reporter assays indicated that an osmotic response element in the promoter was essential for the responsiveness to curcumin. Curcumin accelerated the nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2), and overexpression of Nrf2, but not the dominant negative Nrf2, enhanced the promoter activity of the AR gene. Cells preincubated with curcumin demonstrated resistance to ROS-induced apoptotic death. These effects were significantly attenuated in the presence of AR inhibitors or small interfering RNAs, indicating a protective role for AR against ROS-induced cell damage. Taken together, the activation of PI3K and p38 MAPK by curcumin augmented the expression of the AR gene via Nrf2, and increased AR activity may be an important cellular response against oxidative stress.


Assuntos
Aldeído Redutase/biossíntese , Antioxidantes/farmacologia , Curcumina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Aldeído Redutase/efeitos dos fármacos , Aldeído Redutase/genética , Animais , Apoptose/efeitos dos fármacos , Northern Blotting , Western Blotting , Células Cultivadas , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas , Microscopia Confocal , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Mutagênese Sítio-Dirigida , Proteína Oncogênica v-akt/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Regiões Promotoras Genéticas , RNA Mensageiro/análise , RNA Interferente Pequeno , Ratos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Oncotarget ; 8(55): 94091-94103, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212212

RESUMO

Migration and invasion of cancer cells into surrounding tissue is a key stage of cancer metastasis. Here, we show that peroxisome proliferator-activated receptor (PPAR) δ regulates migration and invasion of human breast cancer cells via thrombospondin-1 (TSP-1) and its degrading protease, a disintegrin and metalloprotease domains with thrombospondin motifs 1 (ADAMTS1). Activation of PPARδ by GW501516, a specific ligand for PPARδ, led to marked inhibition in the cell migration and TSP-1 expression of breast cancer. These effects were suppressed by small interfering RNA-mediated knock-down of ADAMTS1, indicating that ADAMTS1 is involved in PPARδ-mediated inhibition of migration and TSP-1 expression in breast cancer cells. In addition, ligand-activated PPARδ upregulated expression of ADAMTS1 at the transcriptional level via binding of PPARδ to a direct repeat-1 site within the ADAMTS1 gene promoter. Furthermore, ligand-activated PPARδ suppressed invasion of breast cancer cells in an ADAMTS1-dependent manner. Taken together, these results demonstrate that PPARδ suppresses migration and invasion of breast cancer cells by downregulating TSP-1 in a process mediated by upregulation of ADAMTS1.

20.
Int J Biochem Cell Biol ; 37(11): 2297-309, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15936242

RESUMO

To elucidate the molecular mechanisms underlying the up-regulation of aldose reductase observed in many cancer cells, we investigated the signal transduction pathways mediating induction of aldose reductase gene expression by 12-O-tetradecanoylphorbol-13-acetate, a potent tumor promoter. A maximum of four-fold induction in aldose reductase mRNA was demonstrated in HeLa cells treated with 12-O-tetradecanoylphorbol-13-acetate. The increased level of aldose reductase transcript was accompanied by the elevated level of enzyme activity, and completely abolished in the presence of actinomycin D. Inhibitors of protein kinase C, bisindolylmaleimide I and calphostin C, as well as inhibitors of tyrosine kinase, genistein and tyrphostin A23, significantly attenuated 12-O-tetradecanoylphorbol-13-acetate-induced increase in aldose reductase mRNA. Blockade of the p38 mitogen-activated protein kinase pathway by SB203580 also suppressed 12-O-tetradecanoylphorbol-13-acetate-induced aldose reductase expression. The promoter activity of aldose reductase gene was significantly augmented in the cells treated with 12-O-tetradecanoylphorbol-13-acetate, but attenuated in the presence of bisindolylmaleimide I, tyrphostin A23 or SB203580. Pyrrolidinedithiocarbamate, a nuclear factor kappaB inhibitor, dose-dependently suppressed 12-O-tetradecanoylphorbol-13-acetate-induced increase in aldose reductase mRNA. 12-O-tetradecanoylphorbol-13-acetate augmented the DNA binding activity of nuclear factor kappaB and nuclear factor kappaB-dependent gene transcription, and these effects were attenuated by bisindolylmaleimide I or tyrphostin A23, but not by SB203580. Taken together, activation of protein kinase C and tyrosine kinase by 12-O-tetradecanoylphorbol-13-acetate elicits increased promoter activity of aldose reductase gene via nuclear factor kappaB. A p38 mitogen-activated protein kinase pathway, distinct from the tyrosine kinase pathway, may also take part in 12-O-tetradecanoylphorbol-13-acetate-induced increase in aldose reductase gene expression.


Assuntos
Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Carcinógenos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Cicloeximida/farmacologia , Dactinomicina/farmacologia , Ativação Enzimática , Genes Reporter , Células HeLa , Humanos , Regiões Promotoras Genéticas , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA