Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38426523

RESUMO

Metal-organic frameworks (MOFs), with their unique porous structures and versatile functionality, have emerged as promising materials for the adsorption, separation, and storage of diverse molecular species. In this study, we investigate water adsorption in MOF-808, a prototypical MOF that shares the same secondary building unit (SBU) as UiO-66, and elucidate how differences in topology and connectivity between the two MOFs influence the adsorption mechanism. To this end, molecular dynamics simulations were performed to calculate several thermodynamic and dynamical properties of water in MOF-808 as a function of relative humidity (RH), from the initial adsorption step to full pore filling. At low RH, the µ3-OH groups of the SBUs form hydrogen bonds with the initial water molecules entering the pores, which triggers the filling of these pores before the µ3-OH groups in other pores become engaged in hydrogen bonding with water molecules. Our analyses indicate that the pores of MOF-808 become filled by water sequentially as the RH increases. A similar mechanism has been reported for water adsorption in UiO-66. Despite this similarity, our study highlights distinct thermodynamic properties and framework characteristics that influence the adsorption process differently in MOF-808 and UiO-66.

2.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38587225

RESUMO

We present a detailed assessment of deep neural network potentials developed within the Deep Potential Molecular Dynamics (DeePMD) framework and trained on the MB-pol data-driven many-body potential energy function. Specific focus is directed at the ability of DeePMD-based potentials to correctly reproduce the accuracy of MB-pol across various water systems. Analyses of bulk and interfacial properties as well as many-body interactions characteristic of water elucidate inherent limitations in the transferability and predictive accuracy of DeePMD-based potentials. These limitations can be traced back to an incomplete implementation of the "nearsightedness of electronic matter" principle, which may be common throughout machine learning potentials that do not include a proper representation of self-consistently determined long-range electric fields. These findings provide further support for the "short-blanket dilemma" faced by DeePMD-based potentials, highlighting the challenges in achieving a balance between computational efficiency and a rigorous, physics-based representation of the properties of water. Finally, we believe that our study contributes to the ongoing discourse on the development and application of machine learning models in simulating water systems, offering insights that could guide future improvements in the field.

3.
J Am Chem Soc ; 145(20): 11195-11205, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186787

RESUMO

Carbon capture, storage, and utilization (CCSU) represents an opportunity to mitigate carbon emissions that drive global anthropogenic climate change. Promising materials for CCSU through gas adsorption have been developed by leveraging the porosity, stability, and tunability of extended crystalline coordination polymers called metal-organic frameworks (MOFs). While the development of these frameworks has yielded highly effective CO2 sorbents, an in-depth understanding of the properties of MOF pores that lead to the most efficient uptake during sorption would benefit the rational design of more efficient CCSU materials. Though previous investigations of gas-pore interactions often assumed that the internal pore environment was static, discovery of more dynamic behavior represents an opportunity for precise sorbent engineering. Herein, we report a multifaceted in situ analysis following the adsorption of CO2 in MOF-808 variants with different capping agents (formate, acetate, and trifluoroacetate: FA, AA, and TFA, respectively). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis paired with multivariate analysis tools and in situ powder X-ray diffraction revealed unexpected CO2 interactions at the node associated with dynamic behavior of node-capping modulators in the pores of MOF-808, which had previously been assumed to be static. MOF-808-TFA displays two binding modes, resulting in higher binding affinity for CO2. Computational analyses further support these dynamic observations. The beneficial role of these structural dynamics could play an essential role in building a deeper understanding of CO2 binding in MOFs.

4.
Chembiochem ; 24(16): e202200788, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36947856

RESUMO

Base editors are genome editing tools that enable site-specific base conversions through the chemical modification of nucleobases in DNA. Adenine base editors (ABEs) convert A ⋅ T to G ⋅ C base pairs in DNA by using an adenosine deaminase enzyme to modify target adenosines to inosine intermediates. Due to the lack of a naturally occurring adenosine deaminase that can modify DNA, ABEs were evolved from a tRNA-deaminating enzyme, TadA. Previous experiments with an ABE comprising a wild-type (wt) TadA showed no detectable activity on DNA, and directed evolution was therefore required to enable this enzyme to accept DNA as a substrate. Here we show that wtTadA can perform base editing in DNA in both bacterial and mammalian cells, with a strict sequence motif requirement of TAC. We leveraged this discovery to optimize a reporter assay to detect base editing levels as low as 0.01 %. Finally, we used this assay along with molecular dynamics simulations of full ABE:DNA complexes to better understand how the sequence recognition of mutant TadA variants change as they accumulate mutations to better edit DNA substrates.


Assuntos
Adenosina Desaminase , Edição de Genes , Adenosina Desaminase/metabolismo , RNA de Transferência/química , DNA/genética , Mutação , Sistemas CRISPR-Cas
5.
J Chem Phys ; 159(18)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37947509

RESUMO

Delocalization error constrains the accuracy of density functional theory in describing molecular interactions in ion-water systems. Using Na+ and Cl- in water as model systems, we calculate the effects of delocalization error in the SCAN functional for describing ion-water and water-water interactions in hydrated ions, and demonstrate that density-corrected SCAN (DC-SCAN) predicts n-body and interaction energies with an accuracy approaching coupled cluster theory. The performance of DC-SCAN is size-consistent, maintaining an accurate description of molecular interactions well beyond the first solvation shell. Molecular dynamics simulations at ambient conditions with many-body MB-SCAN(DC) potentials, derived from the many-body expansion, predict the solvation structure of Na+ and Cl- in quantitative agreement with reference data, while simultaneously reproducing the structure of liquid water. Beyond rationalizing the accuracy of density-corrected models of ion hydration, our findings suggest that our unified density-corrected MB formalism holds great promise for efficient DFT-based simulations of condensed-phase systems with chemical accuracy.

6.
J Chem Phys ; 158(8): 084111, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859071

RESUMO

Deep neural network (DNN) potentials have recently gained popularity in computer simulations of a wide range of molecular systems, from liquids to materials. In this study, we explore the possibility of combining the computational efficiency of the DeePMD framework and the demonstrated accuracy of the MB-pol data-driven, many-body potential to train a DNN potential for large-scale simulations of water across its phase diagram. We find that the DNN potential is able to reliably reproduce the MB-pol results for liquid water, but provides a less accurate description of the vapor-liquid equilibrium properties. This shortcoming is traced back to the inability of the DNN potential to correctly represent many-body interactions. An attempt to explicitly include information about many-body effects results in a new DNN potential that exhibits the opposite performance, being able to correctly reproduce the MB-pol vapor-liquid equilibrium properties, but losing accuracy in the description of the liquid properties. These results suggest that DeePMD-based DNN potentials are not able to correctly "learn" and, consequently, represent many-body interactions, which implies that DNN potentials may have limited ability to predict the properties for state points that are not explicitly included in the training process. The computational efficiency of the DeePMD framework can still be exploited to train DNN potentials on data-driven many-body potentials, which can thus enable large-scale, "chemically accurate" simulations of various molecular systems, with the caveat that the target state points must have been adequately sampled by the reference data-driven many-body potential in order to guarantee a faithful representation of the associated properties.

7.
J Chem Phys ; 159(5)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37526156

RESUMO

Many-Body eXpansion (MBX) is a C++ library that implements many-body potential energy functions (PEFs) within the "many-body energy" (MB-nrg) formalism. MB-nrg PEFs integrate an underlying polarizable model with explicit machine-learned representations of many-body interactions to achieve chemical accuracy from the gas to the condensed phases. MBX can be employed either as a stand-alone package or as an energy/force engine that can be integrated with generic software for molecular dynamics and Monte Carlo simulations. MBX is parallelized internally using Open Multi-Processing and can utilize Message Passing Interface when available in interfaced molecular simulation software. MBX enables classical and quantum molecular simulations with MB-nrg PEFs, as well as hybrid simulations that combine conventional force fields and MB-nrg PEFs, for diverse systems ranging from small gas-phase clusters to aqueous solutions and molecular fluids to biomolecular systems and metal-organic frameworks.

8.
J Chem Phys ; 156(16): 161103, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35490008

RESUMO

The delicate interplay between functional-driven and density-driven errors in density functional theory (DFT) has hindered traditional density functional approximations (DFAs) from providing an accurate description of water for over 30 years. Recently, the deep-learned DeepMind 21 (DM21) functional has been shown to overcome the limitations of traditional DFAs as it is free of delocalization error. To determine if DM21 can enable a molecular-level description of the physical properties of aqueous systems within Kohn-Sham DFT, we assess the accuracy of the DM21 functional for neutral, protonated, and deprotonated water clusters. We find that the ability of DM21 to accurately predict the energetics of aqueous clusters varies significantly with cluster size. Additionally, we introduce the many-body MB-DM21 potential derived from DM21 data within the many-body expansion of the energy and use it in simulations of liquid water as a function of temperature at ambient pressure. We find that size-dependent functional-driven errors identified in the analysis of the energetics of small clusters calculated with the DM21 functional result in the MB-DM21 potential systematically overestimating the hydrogen-bond strength and, consequently, predicting a more ice-like local structure of water at room temperature.


Assuntos
Água , Teoria da Densidade Funcional , Ligação de Hidrogênio , Água/química
9.
J Chem Phys ; 156(10): 104503, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35291793

RESUMO

Extending on the previous work by Riera et al. [J. Chem. Theory Comput. 16, 2246-2257 (2020)], we introduce a second generation family of data-driven many-body MB-nrg models for CO2 and systematically assess how the strength and anisotropy of the CO2-CO2 interactions affect the models' ability to predict vapor, liquid, and vapor-liquid equilibrium properties. Building upon the many-body expansion formalism, we construct a series of MB-nrg models by fitting one-body and two-body reference energies calculated at the coupled cluster level of theory for large monomer and dimer training sets. Advancing from the first generation models, we employ the charge model 5 scheme to determine the atomic charges and systematically scale the two-body energies to obtain more accurate descriptions of vapor, liquid, and vapor-liquid equilibrium properties. Challenges in model construction arise due to the anisotropic nature and small magnitude of the interaction energies in CO2, calling for the necessity of highly accurate descriptions of the multidimensional energy landscape of liquid CO2. These findings emphasize the key role played by the training set quality in the development of transferable, data-driven models, which, accurately representing high-dimensional many-body effects, can enable predictive computer simulations of molecular fluids across the entire phase diagram.

10.
J Chem Phys ; 157(5): 054504, 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933204

RESUMO

We studied the phase diagram for the TIP4P/Ice water model using enhanced sampling molecular dynamics simulations. Our approach is based on the calculation of ice-liquid free energy differences from biased coexistence simulations that reversibly sample the melting and growth of layers of ice. We computed a total of 19 melting points for five different ice polymorphs, which are in excellent agreement with the melting lines obtained from the integration of the Clausius-Clapeyron equation. For proton-ordered and fully proton-disordered ice phases, the results are in very good agreement with previous calculations based on thermodynamic integration. For the partially proton-disordered ice III, we find a large increase in stability that is in line with previous observations using direct coexistence simulations for the TIP4P/2005 model. This issue highlights the robustness of the approach employed here for ice polymorphs with diverse degrees of proton disorder. Our approach is general and can be applied to the calculation of other complex phase diagrams.

11.
J Chem Phys ; 156(19): 194504, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597630

RESUMO

Non-polarizable empirical potentials have been proven to be incapable of capturing the mixing of methane-water mixtures at elevated pressures. Although density functional theory-based ab initio simulations may circumvent this discrepancy, they are limited in terms of the relevant time and length scales associated with mixing phenomena. Here, we show that the many-body MB-nrg potential, designed to reproduce methane-water interactions with coupled cluster accuracy, successfully captures this phenomenon up to 3 GPa and 500 K with varying methane concentrations. Two-phase simulations and long time scales that are required to fully capture the mixing, affordable due to the speed and accuracy of the MBX software, are assessed. Constructing the methane-water equation of state across the phase diagram shows that the stable mixtures are denser than the sum of their parts at a given pressure and temperature. We find that many-body polarization plays a central role, enhancing the induced dipole moments of methane by 0.20 D during mixing under pressure. Overall, the mixed system adopts a denser state, which involves a significant enthalpic driving force as elucidated by a systematic many-body energy decomposition analysis.

12.
Proc Natl Acad Sci U S A ; 116(49): 24413-24419, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31685641

RESUMO

The appearance of ice I in the smallest possible clusters and the nature of its phase coexistence with liquid water could not thus far be unraveled. The experimental and theoretical infrared spectroscopic and free-energy results of this work show the emergence of the characteristic hydrogen-bonding pattern of ice I in clusters containing only around 90 water molecules. The onset of crystallization is accompanied by an increase of surface oscillator intensity with decreasing surface-to-volume ratio, a spectral indicator of nanoscale crystallinity of water. In the size range from 90 to 150 water molecules, we observe mixtures of largely crystalline and purely amorphous clusters. Our analysis suggests that the liquid-ice I transition in clusters loses its sharp 1st-order character at the end of the crystalline-size regime and occurs over a range of temperatures through heterophasic oscillations in time, a process without analog in bulk water.

13.
J Am Chem Soc ; 143(50): 21189-21194, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878776

RESUMO

Water capture mechanisms of zeolitic imidazolate framework ZIF-90 are revealed by differentiating the water clustering and the center pore filling step, using vibrational sum-frequency generation spectroscopy (VSFG) at a one-micron spatial resolution and state-of-the-art molecular dynamics (MD) simulations. Through spectral line shape comparison between VSFG and IR spectra, the relative humidity dependence of VSFG intensity, and MD simulations, based on MB-pol, we found water clustering and center pore filling happen nearly simultaneously within each pore, with water filling the other pores sequentially. The integration of nonlinear optics with MD simulations provides critical mechanistic insights into the pore filling mechanism and suggests that the relative strength of the hydrogen bonds governs the water uptake mechanisms. This molecular-level detailed mechanism can inform the rational optimization of metal-organic frameworks for water harvesting.

14.
J Chem Phys ; 155(6): 064502, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391363

RESUMO

We present a new data-driven potential energy function (PEF) describing chloride-water interactions, which is developed within the many-body-energy (MB-nrg) theoretical framework. Besides quantitatively reproducing low-order many-body energy contributions, the new MB-nrg PEF is able to correctly predict the interaction energies of small chloride-water clusters calculated at the coupled cluster level of theory. Importantly, classical and quantum molecular dynamics simulations of a single chloride ion in water demonstrate that the new MB-nrg PEF predicts x-ray spectra in close agreement with the experimental results. Comparisons with an popular empirical model and a polarizable PEF emphasize the importance of an accurate representation of short-range many-body effect while demonstrating that pairwise additive representations of chloride-water and water-water interactions are inadequate for correctly representing the hydration structure of chloride in both gas-phase clusters and solution. We believe that the analyses presented in this study provide additional evidence for the accuracy and predictive ability of the MB-nrg PEFs, which can then enable more realistic simulations of ionic aqueous systems in different environments.

15.
J Chem Phys ; 155(12): 124801, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598567

RESUMO

Many-body potential energy functions (MB-PEFs), which integrate data-driven representations of many-body short-range quantum mechanical interactions with physics-based representations of many-body polarization and long-range interactions, have recently been shown to provide high accuracy in the description of molecular interactions from the gas to the condensed phase. Here, we present MB-Fit, a software infrastructure for the automated development of MB-PEFs for generic molecules within the TTM-nrg (Thole-type model energy) and MB-nrg (many-body energy) theoretical frameworks. Besides providing all the necessary computational tools for generating TTM-nrg and MB-nrg PEFs, MB-Fit provides a seamless interface with the MBX software, a many-body energy and force calculator for computer simulations. Given the demonstrated accuracy of the MB-PEFs, particularly within the MB-nrg framework, we believe that MB-Fit will enable routine predictive computer simulations of generic (small) molecules in the gas, liquid, and solid phases, including, but not limited to, the modeling of quantum isomeric equilibria in molecular clusters, solvation processes, molecular crystals, and phase diagrams.

16.
J Chem Phys ; 154(21): 211103, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240989

RESUMO

Among the many existing molecular models of water, the MB-pol many-body potential has emerged as a remarkably accurate model, capable of reproducing thermodynamic, structural, and dynamic properties across water's solid, liquid, and vapor phases. In this work, we assessed the performance of MB-pol with respect to an important set of properties related to vapor-liquid coexistence and interfacial behavior. Through direct coexistence classical molecular dynamics simulations at temperatures of 400 K < T < 600 K, we calculated properties such as equilibrium coexistence densities, vapor-liquid interfacial tension, vapor pressure, and enthalpy of vaporization and compared the MB-pol results to experimental data. We also compared rigid vs fully flexible variants of the MB-pol model and evaluated system size effects for the properties studied. We found that the MB-pol model predictions are in good agreement with experimental data, even for temperatures approaching the vapor-liquid critical point; this agreement was largely insensitive to system sizes or the rigid vs flexible treatment of the intramolecular degrees of freedom. These results attest to the chemical accuracy of MB-pol and its high degree of transferability, thus enabling MB-pol's application across a large swath of water's phase diagram.

17.
Proc Natl Acad Sci U S A ; 115(33): 8266-8271, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29987018

RESUMO

Antifreeze proteins (AFPs) inhibit ice growth in organisms living in cold environments. Hyperactive insect AFPs are particularly effective, binding ice through "anchored clathrate" motifs. It has been hypothesized that the binding of hyperactive AFPs to ice is facilitated by preordering of water at the ice-binding site (IBS) of the protein in solution. The antifreeze protein TmAFP displays the best matching of its binding site to ice, making it the optimal candidate to develop ice-like order in solution. Here we use multiresolution simulations to unravel the mechanism by which TmAFP recognizes and binds ice. We find that water at the IBS of the antifreeze protein in solution does not acquire ice-like or anchored clathrate-like order. Ice recognition occurs by slow diffusion of the protein to achieve the proper orientation with respect to the ice surface, followed by fast collective organization of the hydration water at the IBS to form an anchored clathrate motif that latches the protein to the ice surface. The simulations suggest that anchored clathrate order could develop on the large ice-binding surfaces of aggregates of ice-nucleating proteins (INP). We compute the infrared and Raman spectra of water in the anchored clathrate motif. The signatures of the OH stretch of water in the anchored clathrate motif can be distinguished from those of bulk liquid in the Raman spectra, but not in the infrared spectra. We thus suggest that Raman spectroscopy may be used to probe the anchored clathrate order at the ice-binding surface of INP aggregates.


Assuntos
Proteínas Anticongelantes/química , Gelo , Água/química , Sítios de Ligação , Espectrofotometria Infravermelho , Análise Espectral Raman
18.
J Chem Phys ; 153(6): 060901, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287447

RESUMO

We present a systematic analysis of state-of-the-art polarizable and flexible water models from a many-body perspective, with a specific focus on their ability to represent the Born-Oppenheimer potential energy surface of water from the gas to the liquid phase. Using coupled cluster data in the completed basis set limit as a reference, we examine the accuracy of the polarizable models in reproducing individual many-body contributions to interaction energies and harmonic frequencies of water clusters and compare their performance with that of MB-pol, an explicit many-body model that has been shown to correctly predict the properties of water across the entire phase diagram. Based on these comparisons, we use MB-pol as a reference to analyze the ability of the polarizable models to reproduce the energy landscape of liquid water under ambient conditions. We find that, while correctly reproducing the energetics of minimum-energy structures, the polarizable models examined in this study suffer from inadequate representations of many-body effects for distorted configurations. To investigate the role played by geometry-dependent representations of 1-body charge distributions in reproducing coupled cluster data for both interaction and many-body energies, we introduce a simplified version of MB-pol that adopts fixed atomic charges and demonstrate that the new model retains the same accuracy as the original MB-pol model. Based on the analyses presented in this study, we believe that future developments of both polarizable and explicit many-body models should continue in parallel and would benefit from synergistic efforts aimed at integrating the best aspects of the two theoretical/computational frameworks.

19.
J Chem Phys ; 153(4): 044306, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32752679

RESUMO

A quantitative description of the interactions between ions and water is key to characterizing the role played by ions in mediating fundamental processes that take place in aqueous environments. At the molecular level, vibrational spectroscopy provides a unique means to probe the multidimensional potential energy surface of small ion-water clusters. In this study, we combine the MB-nrg potential energy functions recently developed for ion-water interactions with perturbative corrections to vibrational self-consistent field theory and the local-monomer approximation to disentangle many-body effects on the stability and vibrational structure of the Cs+(H2O)3 cluster. Since several low-energy, thermodynamically accessible isomers exist for Cs+(H2O)3, even small changes in the description of the underlying potential energy surface can result in large differences in the relative stability of the various isomers. Our analysis demonstrates that a quantitative account for three-body energies and explicit treatment of cross-monomer vibrational couplings are required to reproduce the experimental spectrum.

20.
J Chem Phys ; 152(14): 144103, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295371

RESUMO

The efficient selection of representative configurations that are used in high-level electronic structure calculations needed for the development of many-body molecular models poses a challenge to current data-driven approaches to molecular simulations. Here, we introduce an active learning (AL) framework for generating training sets corresponding to individual many-body contributions to the energy of an N-body system, which are required for the development of MB-nrg potential energy functions (PEFs). Our AL framework is based on uncertainty and error estimation and uses Gaussian process regression to identify the most relevant configurations that are needed for an accurate representation of the energy landscape of the molecular system under examination. Taking the Cs+-water system as a case study, we demonstrate that the application of our AL framework results in significantly smaller training sets than previously used in the development of the original MB-nrg PEF, without loss of accuracy. Considering the computational cost associated with high-level electronic structure calculations, our AL framework is particularly well-suited to the development of many-body PEFs, with chemical and spectroscopic accuracy, for molecular-level computer simulations from the gas to the condensed phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA