Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 30(3): 256-270, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164598

RESUMO

Cleavage and polyadenylation is necessary for the formation of mature mRNA molecules. The rate at which this process occurs can determine the temporal availability of mRNA for subsequent function throughout the cell and is likely tightly regulated. Despite advances in high-throughput approaches for global kinetic profiling of RNA maturation, genome-wide 3' end cleavage rates have never been measured. Here, we describe a novel approach to estimate the rates of cleavage, using metabolic labeling of nascent RNA, high-throughput sequencing, and mathematical modeling. Using in silico simulations of nascent RNA-seq data, we show that our approach can accurately and precisely estimate cleavage half-lives for both constitutive and alternative sites. We find that 3' end cleavage is fast on average, with half-lives under a minute, but highly variable across individual sites. Rapid cleavage is promoted by the presence of canonical sequence elements and an increased density of polyadenylation signals near a cleavage site. Finally, we find that cleavage rates are associated with the localization of RNA polymerase II at the end of a gene, and faster cleavage leads to quicker degradation of downstream readthrough RNA. Our findings shed light on the features important for efficient 3' end cleavage and the regulation of transcription termination.


Assuntos
Precursores de RNA , Transcrição Gênica , Precursores de RNA/genética , Precursores de RNA/metabolismo , Poliadenilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Nucleic Acids Res ; 50(22): 12657-12673, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36511872

RESUMO

Friedreich's ataxia is an incurable disease caused by frataxin (FXN) protein deficiency, which is mostly induced by GAA repeat expansion in intron 1 of the FXN gene. Here, we identified antisense oligonucleotides (ASOs), complementary to two regions within the first intron of FXN pre-mRNA, which could increase FXN mRNA by ∼2-fold in patient fibroblasts. The increase in FXN mRNA was confirmed by the identification of multiple overlapping FXN-activating ASOs at each region, two independent RNA quantification assays, and normalization by multiple housekeeping genes. Experiments on cells with the ASO-binding sites deleted indicate that the ASO-induced FXN activation was driven by indirect effects. RNA sequencing analyses showed that the two ASOs induced similar transcriptome-wide changes, which did not resemble the transcriptome of wild-type cells. This RNA-seq analysis did not identify directly base-paired off-target genes shared across ASOs. Mismatch studies identified two guanosine-rich motifs (CCGG and G4) within the ASOs that were required for FXN activation. The phosphorodiamidate morpholino oligomer analogs of our ASOs did not activate FXN, pointing to a PS-backbone-mediated effect. Our study demonstrates the importance of multiple, detailed control experiments and target validation in oligonucleotide studies employing novel mechanisms such as gene activation.


Assuntos
Ataxia de Friedreich , Regulação da Expressão Gênica , Oligonucleotídeos Antissenso , Humanos , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Frataxina
3.
PLoS Genet ; 14(8): e1007588, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30148878

RESUMO

Recursive splicing, a process by which a single intron is removed from pre-mRNA transcripts in multiple distinct segments, has been observed in a small subset of Drosophila melanogaster introns. However, detection of recursive splicing requires observation of splicing intermediates that are inherently unstable, making it difficult to study. Here we developed new computational approaches to identify recursively spliced introns and applied them, in combination with existing methods, to nascent RNA sequencing data from Drosophila S2 cells. These approaches identified hundreds of novel sites of recursive splicing, expanding the catalog of recursively spliced fly introns by 4-fold. A subset of recursive sites were validated by RT-PCR and sequencing. Recursive sites occur in most very long (> 40 kb) fly introns, including many genes involved in morphogenesis and development, and tend to occur near the midpoints of introns. Suggesting a possible function for recursive splicing, we observe that fly introns with recursive sites are spliced more accurately than comparably sized non-recursive introns.


Assuntos
Drosophila melanogaster/genética , Íntrons , Splicing de RNA , Animais , Ontologia Genética , Modelos Teóricos , Precursores de RNA/genética , Sítios de Splice de RNA , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transcrição Gênica
4.
PLoS Genet ; 13(10): e1006995, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29023442

RESUMO

Environmental perturbations have large effects on both organismal and cellular traits, including gene expression, but the extent to which the environment affects RNA processing remains largely uncharacterized. Recent studies have identified a large number of genetic variants associated with variation in RNA processing that also have an important role in complex traits; yet we do not know in which contexts the different underlying isoforms are used. Here, we comprehensively characterized changes in RNA processing events across 89 environments in five human cell types and identified 15,300 event shifts (FDR = 15%) comprised of eight event types in over 4,000 genes. Many of these changes occur consistently in the same direction across conditions, indicative of global regulation by trans factors. Accordingly, we demonstrate that environmental modulation of splicing factor binding predicts shifts in intron retention, and that binding of transcription factors predicts shifts in alternative first exon (AFE) usage in response to specific treatments. We validated the mechanism hypothesized for AFE in two independent datasets. Using ATAC-seq, we found altered binding of 64 factors in response to selenium at sites of AFE shift, including ELF2 and other factors in the ETS family. We also performed AFE QTL mapping in 373 individuals and found an enrichment for SNPs predicted to disrupt binding of the ELF2 factor. Together, these results demonstrate that RNA processing is dramatically changed in response to environmental perturbations through specific mechanisms regulated by trans factors.


Assuntos
Meio Ambiente , Processamento Pós-Transcricional do RNA , Linhagem Celular , Éxons , Regulação da Expressão Gênica , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Íntrons , Locos de Características Quantitativas , Alinhamento de Sequência , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
PLoS Genet ; 12(9): e1006338, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27690314

RESUMO

The contribution of pre-mRNA processing mechanisms to the regulation of immune responses remains poorly studied despite emerging examples of their role as regulators of immune defenses. We sought to investigate the role of mRNA processing in the cellular responses of human macrophages to live bacterial infections. Here, we used mRNA sequencing to quantify gene expression and isoform abundances in primary macrophages from 60 individuals, before and after infection with Listeria monocytogenes and Salmonella typhimurium. In response to both bacteria we identified thousands of genes that significantly change isoform usage in response to infection, characterized by an overall increase in isoform diversity after infection. In response to both bacteria, we found global shifts towards (i) the inclusion of cassette exons and (ii) shorter 3' UTRs, with near-universal shifts towards usage of more upstream polyadenylation sites. Using complementary data collected in non-human primates, we show that these features are evolutionarily conserved among primates. Following infection, we identify candidate RNA processing factors whose expression is associated with individual-specific variation in isoform abundance. Finally, by profiling microRNA levels, we show that 3' UTRs with reduced abundance after infection are significantly enriched for target sites for particular miRNAs. These results suggest that the pervasive usage of shorter 3' UTRs is a mechanism for particular genes to evade repression by immune-activated miRNAs. Collectively, our results suggest that dynamic changes in RNA processing may play key roles in the regulation of innate immune responses.

6.
Nature ; 482(7385): 390-4, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22307276

RESUMO

The mapping of expression quantitative trait loci (eQTLs) has emerged as an important tool for linking genetic variation to changes in gene regulation. However, it remains difficult to identify the causal variants underlying eQTLs, and little is known about the regulatory mechanisms by which they act. Here we show that genetic variants that modify chromatin accessibility and transcription factor binding are a major mechanism through which genetic variation leads to gene expression differences among humans. We used DNase I sequencing to measure chromatin accessibility in 70 Yoruba lymphoblastoid cell lines, for which genome-wide genotypes and estimates of gene expression levels are also available. We obtained a total of 2.7 billion uniquely mapped DNase I-sequencing (DNase-seq) reads, which allowed us to produce genome-wide maps of chromatin accessibility for each individual. We identified 8,902 locations at which the DNase-seq read depth correlated significantly with genotype at a nearby single nucleotide polymorphism or insertion/deletion (false discovery rate = 10%). We call such variants 'DNase I sensitivity quantitative trait loci' (dsQTLs). We found that dsQTLs are strongly enriched within inferred transcription factor binding sites and are frequently associated with allele-specific changes in transcription factor binding. A substantial fraction (16%) of dsQTLs are also associated with variation in the expression levels of nearby genes (that is, these loci are also classified as eQTLs). Conversely, we estimate that as many as 55% of eQTL single nucleotide polymorphisms are also dsQTLs. Our observations indicate that dsQTLs are highly abundant in the human genome and are likely to be important contributors to phenotypic variation.


Assuntos
Pegada de DNA , Desoxirribonuclease I/metabolismo , Regulação da Expressão Gênica/genética , Variação Genética/genética , Locos de Características Quantitativas/genética , Cromatina/genética , Cromatina/metabolismo , Perfilação da Expressão Gênica , Genoma Humano/genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
7.
PLoS Genet ; 11(1): e1004857, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569255

RESUMO

It is now well established that noncoding regulatory variants play a central role in the genetics of common diseases and in evolution. However, until recently, we have known little about the mechanisms by which most regulatory variants act. For instance, what types of functional elements in DNA, RNA, or proteins are most often affected by regulatory variants? Which stages of gene regulation are typically altered? How can we predict which variants are most likely to impact regulation in a given cell type? Recent studies, in many cases using quantitative trait loci (QTL)-mapping approaches in cell lines or tissue samples, have provided us with considerable insight into the properties of genetic loci that have regulatory roles. Such studies have uncovered novel biochemical regulatory interactions and led to the identification of previously unrecognized regulatory mechanisms. We have learned that genetic variation is often directly associated with variation in regulatory activities (namely, we can map regulatory QTLs, not just expression QTLs [eQTLs]), and we have taken the first steps towards understanding the causal order of regulatory events (for example, the role of pioneer transcription factors). Yet, in most cases, we still do not know how to interpret overlapping combinations of regulatory interactions, and we are still far from being able to predict how variation in regulatory mechanisms is propagated through a chain of interactions to eventually result in changes in gene expression profiles.


Assuntos
Cromatina/genética , Regulação da Expressão Gênica , Genoma Humano , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Metilação de DNA/genética , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Fatores de Transcrição/genética
8.
Nature ; 464(7289): 768-72, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20220758

RESUMO

Understanding the genetic mechanisms underlying natural variation in gene expression is a central goal of both medical and evolutionary genetics, and studies of expression quantitative trait loci (eQTLs) have become an important tool for achieving this goal. Although all eQTL studies so far have assayed messenger RNA levels using expression microarrays, recent advances in RNA sequencing enable the analysis of transcript variation at unprecedented resolution. We sequenced RNA from 69 lymphoblastoid cell lines derived from unrelated Nigerian individuals that have been extensively genotyped by the International HapMap Project. By pooling data from all individuals, we generated a map of the transcriptional landscape of these cells, identifying extensive use of unannotated untranslated regions and more than 100 new putative protein-coding exons. Using the genotypes from the HapMap project, we identified more than a thousand genes at which genetic variation influences overall expression levels or splicing. We demonstrate that eQTLs near genes generally act by a mechanism involving allele-specific expression, and that variation that influences the inclusion of an exon is enriched within and near the consensus splice sites. Our results illustrate the power of high-throughput sequencing for the joint analysis of variation in transcription, splicing and allele-specific expression across individuals.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Variação Genética/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Transcrição Gênica/genética , Alelos , População Negra/genética , Sequência Consenso/genética , DNA Complementar/genética , Éxons/genética , Humanos , Nigéria , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Sítios de Splice de RNA/genética , Análise de Sequência de RNA
9.
Proc Natl Acad Sci U S A ; 109(4): 1204-9, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22233810

RESUMO

Tuberculosis (TB) is a major public health problem. One-third of the world's population is estimated to be infected with Mycobacterium tuberculosis (MTB), the etiological agent causing TB, and active disease kills nearly 2 million individuals worldwide every year. Several lines of evidence indicate that interindividual variation in susceptibility to TB has a heritable component, yet we still know little about the underlying genetic architecture. To address this, we performed a genome-wide mapping study of loci that are associated with functional variation in immune response to MTB. Specifically, we characterized transcript and protein expression levels and mapped expression quantitative trait loci (eQTL) in primary dendritic cells (DCs) from 65 individuals, before and after infection with MTB. We found 198 response eQTL, namely loci that were associated with variation in gene expression levels in either untreated or MTB-infected DCs, but not both. These response eQTL are associated with natural regulatory variation that likely affects (directly or indirectly) host interaction with MTB. Indeed, when we integrated our data with results from a genome-wide association study (GWAS) for pulmonary TB, we found that the response eQTL were more likely to be genetically associated with the disease. We thus identified a number of candidate loci, including the MAPK phosphatase DUSP14 in particular, that are promising susceptibility genes to pulmonary TB.


Assuntos
Células Dendríticas/metabolismo , Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica/imunologia , Predisposição Genética para Doença/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/genética , Tuberculose/imunologia , Adulto , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas/genética , População Branca/genética
10.
PLoS Genet ; 8(11): e1003036, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166509

RESUMO

Nucleosomes are important for gene regulation because their arrangement on the genome can control which proteins bind to DNA. Currently, few human nucleosomes are thought to be consistently positioned across cells; however, this has been difficult to assess due to the limited resolution of existing data. We performed paired-end sequencing of micrococcal nuclease-digested chromatin (MNase-seq) from seven lymphoblastoid cell lines and mapped over 3.6 billion MNase-seq fragments to the human genome to create the highest-resolution map of nucleosome occupancy to date in a human cell type. In contrast to previous results, we find that most nucleosomes have more consistent positioning than expected by chance and a substantial fraction (8.7%) of nucleosomes have moderate to strong positioning. In aggregate, nucleosome sequences have 10 bp periodic patterns in dinucleotide frequency and DNase I sensitivity; and, across cells, nucleosomes frequently have translational offsets that are multiples of 10 bp. We estimate that almost half of the genome contains regularly spaced arrays of nucleosomes, which are enriched in active chromatin domains. Single nucleotide polymorphisms that reduce DNase I sensitivity can disrupt the phasing of nucleosome arrays, which indicates that they often result from positioning against a barrier formed by other proteins. However, nucleosome arrays can also be created by DNA sequence alone. The most striking example is an array of over 400 nucleosomes on chromosome 12 that is created by tandem repetition of sequences with strong positioning properties. In summary, a large fraction of nucleosomes are consistently positioned--in some regions because they adopt favored sequence positions, and in other regions because they are forced into specific arrangements by chromatin remodeling or DNA binding proteins.


Assuntos
Cromatina/genética , DNA/genética , Nucleossomos/genética , Linhagem Celular , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Genoma Humano , Humanos , Nuclease do Micrococo/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de DNA
11.
PLoS Genet ; 8(10): e1003000, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071454

RESUMO

Recent gene expression QTL (eQTL) mapping studies have provided considerable insight into the genetic basis for inter-individual regulatory variation. However, a limitation of all eQTL studies to date, which have used measurements of steady-state gene expression levels, is the inability to directly distinguish between variation in transcription and decay rates. To address this gap, we performed a genome-wide study of variation in gene-specific mRNA decay rates across individuals. Using a time-course study design, we estimated mRNA decay rates for over 16,000 genes in 70 Yoruban HapMap lymphoblastoid cell lines (LCLs), for which extensive genotyping data are available. Considering mRNA decay rates across genes, we found that: (i) as expected, highly expressed genes are generally associated with lower mRNA decay rates, (ii) genes with rapid mRNA decay rates are enriched with putative binding sites for miRNA and RNA binding proteins, and (iii) genes with similar functional roles tend to exhibit correlated rates of mRNA decay. Focusing on variation in mRNA decay across individuals, we estimate that steady-state expression levels are significantly correlated with variation in decay rates in 10% of genes. Somewhat counter-intuitively, for about half of these genes, higher expression is associated with faster decay rates, possibly due to a coupling of mRNA decay with transcriptional processes in genes involved in rapid cellular responses. Finally, we used these data to map genetic variation that is specifically associated with variation in mRNA decay rates across individuals. We found 195 such loci, which we named RNA decay quantitative trait loci ("rdQTLs"). All the observed rdQTLs are located near the regulated genes and therefore are assumed to act in cis. By analyzing our data within the context of known steady-state eQTLs, we estimate that a substantial fraction of eQTLs are associated with inter-individual variation in mRNA decay rates.


Assuntos
Expressão Gênica , Variação Genética , Locos de Características Quantitativas , Estabilidade de RNA , Linhagem Celular , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Interferência de RNA
12.
Proc Natl Acad Sci U S A ; 109(31): 12656-61, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22797897

RESUMO

Gene expression differences are shaped by selective pressures and contribute to phenotypic differences between species. We identified 964 copy number differences (CNDs) of conserved sequences across three primate species and examined their potential effects on gene expression profiles. Samples with copy number different genes had significantly different expression than samples with neutral copy number. Genes encoding regulatory molecules differed in copy number and were associated with significant expression differences. Additionally, we identified 127 CNDs that were processed pseudogenes and some of which were expressed. Furthermore, there were copy number-different regulatory regions such as ultraconserved elements and long intergenic noncoding RNAs with the potential to affect expression. We postulate that CNDs of these conserved sequences fine-tune developmental pathways by altering the levels of RNA.


Assuntos
DNA Intergênico/fisiologia , Dosagem de Genes/fisiologia , Regulação da Expressão Gênica/fisiologia , Pseudogenes/fisiologia , RNA não Traduzido/fisiologia , Elementos Reguladores de Transcrição/fisiologia , Animais , Linhagem Celular , Humanos , Macaca mulatta , Pan troglodytes , Especificidade da Espécie
13.
BMC Biol ; 12: 42, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24885439

RESUMO

BACKGROUND: The use of low quality RNA samples in whole-genome gene expression profiling remains controversial. It is unclear if transcript degradation in low quality RNA samples occurs uniformly, in which case the effects of degradation can be corrected via data normalization, or whether different transcripts are degraded at different rates, potentially biasing measurements of expression levels. This concern has rendered the use of low quality RNA samples in whole-genome expression profiling problematic. Yet, low quality samples (for example, samples collected in the course of fieldwork) are at times the sole means of addressing specific questions. RESULTS: We sought to quantify the impact of variation in RNA quality on estimates of gene expression levels based on RNA-seq data. To do so, we collected expression data from tissue samples that were allowed to decay for varying amounts of time prior to RNA extraction. The RNA samples we collected spanned the entire range of RNA Integrity Number (RIN) values (a metric commonly used to assess RNA quality). We observed widespread effects of RNA quality on measurements of gene expression levels, as well as a slight but significant loss of library complexity in more degraded samples. CONCLUSIONS: While standard normalizations failed to account for the effects of degradation, we found that by explicitly controlling for the effects of RIN using a linear model framework we can correct for the majority of these effects. We conclude that in instances in which RIN and the effect of interest are not associated, this approach can help recover biologically meaningful signals in data from degraded RNA samples.


Assuntos
Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica , Genes , Humanos , Anotação de Sequência Molecular , Análise de Componente Principal , RNA Mensageiro/genética , Estatísticas não Paramétricas
14.
Hum Mol Genet ; 21(9): 2111-23, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22286170

RESUMO

Recent genome-wide association studies (GWAS) have identified a number of novel genetic associations with complex human diseases. In spite of these successes, results from GWAS generally explain only a small proportion of disease heritability, an observation termed the 'missing heritability problem'. Several sources for the missing heritability have been proposed, including the contribution of many common variants with small individual effect sizes, which cannot be reliably found using the standard GWAS approach. The goal of our study was to explore a complimentary approach, which combines GWAS results with functional data in order to identify novel genetic associations with small effect sizes. To do so, we conducted a GWAS for lymphocyte count, a physiologic quantitative trait associated with asthma, in 462 Hutterites. In parallel, we performed a genome-wide gene expression study in lymphoblastoid cell lines from 96 Hutterites. We found significant support for genetic associations using the GWAS data when we considered variants near the 193 genes whose expression levels across individuals were most correlated with lymphocyte counts. Interestingly, these variants are also enriched with signatures of an association with asthma susceptibility, an observation we were able to replicate. The associated loci include genes previously implicated in asthma susceptibility as well as novel candidate genes enriched for functions related to T cell receptor signaling and adenosine triphosphate synthesis. Our results, therefore, establish a new set of asthma susceptibility candidate genes. More generally, our observations support the notion that many loci of small effects influence variation in lymphocyte count and asthma susceptibility.


Assuntos
Asma/sangue , Asma/genética , Contagem de Linfócitos , Linhagem Celular , Interpretação Estatística de Dados , Etnicidade/genética , Perfilação da Expressão Gênica/estatística & dados numéricos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Locos de Características Quantitativas
15.
Genome Res ; 21(3): 447-55, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21106904

RESUMO

Accurate functional annotation of regulatory elements is essential for understanding global gene regulation. Here, we report a genome-wide map of 827,000 transcription factor binding sites in human lymphoblastoid cell lines, which is comprised of sites corresponding to 239 position weight matrices of known transcription factor binding motifs, and 49 novel sequence motifs. To generate this map, we developed a probabilistic framework that integrates cell- or tissue-specific experimental data such as histone modifications and DNase I cleavage patterns with genomic information such as gene annotation and evolutionary conservation. Comparison to empirical ChIP-seq data suggests that our method is highly accurate yet has the advantage of targeting many factors in a single assay. We anticipate that this approach will be a valuable tool for genome-wide studies of gene regulation in a wide variety of cell types or tissues under diverse conditions.


Assuntos
Sítios de Ligação/genética , Cromatina/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Células Cultivadas , Cromatina/genética , Imunoprecipitação da Cromatina , Biologia Computacional , Clivagem do DNA , Genoma , Histonas/metabolismo , Humanos , Anotação de Sequência Molecular , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Transcrição Gênica
16.
PLoS Genet ; 7(2): e1001316, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21383968

RESUMO

The modification of DNA by methylation is an important epigenetic mechanism that affects the spatial and temporal regulation of gene expression. Methylation patterns have been described in many contexts within and across a range of species. However, the extent to which changes in methylation might underlie inter-species differences in gene regulation, in particular between humans and other primates, has not yet been studied. To this end, we studied DNA methylation patterns in livers, hearts, and kidneys from multiple humans and chimpanzees, using tissue samples for which genome-wide gene expression data were also available. Using the multi-species gene expression and methylation data for 7,723 genes, we were able to study the role of promoter DNA methylation in the evolution of gene regulation across tissues and species. We found that inter-tissue methylation patterns are often conserved between humans and chimpanzees. However, we also found a large number of gene expression differences between species that might be explained, at least in part, by corresponding differences in methylation levels. In particular, we estimate that, in the tissues we studied, inter-species differences in promoter methylation might underlie as much as 12%-18% of differences in gene expression levels between humans and chimpanzees.


Assuntos
Metilação de DNA , Expressão Gênica , Pan troglodytes/genética , Animais , Estudo de Associação Genômica Ampla , Humanos , Pan troglodytes/metabolismo
17.
bioRxiv ; 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38260419

RESUMO

The expression of a precise mRNA transcriptome is crucial for establishing cell identity and function, with dozens of alternative isoforms produced for a single gene sequence. The regulation of mRNA isoform usage occurs by the coordination of co-transcriptional mRNA processing mechanisms across a gene. Decisions involved in mRNA initiation and termination underlie the largest extent of mRNA isoform diversity, but little is known about any relationships between decisions at both ends of mRNA molecules. Here, we systematically profile the joint usage of mRNA transcription start sites (TSSs) and polyadenylation sites (PASs) across tissues and species. Using both short and long read RNA-seq data, we observe that mRNAs preferentially using upstream TSSs also tend to use upstream PASs, and congruently, the usage of downstream sites is similarly paired. This observation suggests that mRNA 5' end choice may directly influence mRNA 3' ends. Our results suggest a novel "Positional Initiation-Termination Axis" (PITA), in which the usage of alternative terminal sites are coupled based on the order in which they appear in the genome. PITA isoforms are more likely to encode alternative protein domains and use conserved sites. PITA is strongly associated with the length of genomic features, such that PITA is enriched in longer genes with more area devoted to regions that regulate alternative 5' or 3' ends. Strikingly, we found that PITA genes are more likely than non-PITA genes to have multiple, overlapping chromatin structural domains related to pairing of ordinally coupled start and end sites. In turn, PITA coupling is also associated with fast RNA Polymerase II (RNAPII) trafficking across these long gene regions. Our findings indicate that a combination of spatial and kinetic mechanisms couple transcription initiation and mRNA 3' end decisions based on ordinal position to define the expression mRNA isoforms.

18.
PLoS Genet ; 6(12): e1001236, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21151575

RESUMO

While the majority of multiexonic human genes show some evidence of alternative splicing, it is unclear what fraction of observed splice forms is functionally relevant. In this study, we examine the extent of alternative splicing in human cells using deep RNA sequencing and de novo identification of splice junctions. We demonstrate the existence of a large class of low abundance isoforms, encompassing approximately 150,000 previously unannotated splice junctions in our data. Newly-identified splice sites show little evidence of evolutionary conservation, suggesting that the majority are due to erroneous splice site choice. We show that sequence motifs involved in the recognition of exons are enriched in the vicinity of unconserved splice sites. We estimate that the average intron has a splicing error rate of approximately 0.7% and show that introns in highly expressed genes are spliced more accurately, likely due to their shorter length. These results implicate noisy splicing as an important property of genome evolution.


Assuntos
Processamento Alternativo , Variação Genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linhagem Celular , Éxons , Humanos , Íntrons , Sítios de Splice de RNA , RNA Mensageiro/química , Análise de Sequência de RNA
19.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546743

RESUMO

Long-read sequencing (LRS) technologies have the potential to revolutionize scientific discoveries in RNA biology, especially by enabling the comprehensive identification and quantification of full length mRNA isoforms. However, inherently high error rates make the analysis of long-read sequencing data challenging. While these error rates have been characterized for sequence and splice site identification, it is still unclear how accurately LRS reads represent transcript start and end sites. Here, we systematically assess the variability and accuracy of mRNA terminal ends identified by LRS reads across multiple sequencing platforms. We find substantial inconsistencies in both the start and end coordinates of LRS reads spanning a gene, such that LRS reads often fail to accurately recapitulate annotated or empirically derived terminal ends of mRNA molecules. To address this challenge, we introduce an approach to condition reads based on empirically derived terminal ends and identified a subset of reads that are more likely to represent full-length transcripts. Our approach can improve transcriptome analyses by enhancing the fidelity of transcript terminal end identification, but may result in lower power to quantify genes or discover novel isoforms. Thus, it is necessary to be cautious when selecting sequencing approaches and/or interpreting data from long-read RNA sequencing.

20.
Sci Rep ; 12(1): 7745, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546161

RESUMO

The antisense non-coding RNA in the INK locus (ANRIL) is a hotspot for genetic variants associated with cardiometabolic disease. We recently found increased ANRIL abundance in human pancreatic islets from donors with certain Type II Diabetes (T2D) risk-SNPs, including a T2D risk-SNP located within ANRIL exon 2 associated with beta cell proliferation. Recent studies have found that expression of circular species of ANRIL is linked to the regulation of cardiovascular phenotypes. Less is known about how the abundance of circular ANRIL may influence T2D phenotypes. Herein, we sequence circular RNA in pancreatic islets to characterize circular isoforms of ANRIL. We identify several consistently expressed circular ANRIL isoforms whose expression is correlated across dozens of individuals and characterize ANRIL splice sites that are commonly involved in back-splicing. We find that samples with the T2D risk allele in ANRIL exon 2 had higher ratios of circular to linear ANRIL compared to protective-allele carriers, and that higher circular:linear ANRIL was associated with decreased beta cell proliferation. Our study points to a combined involvement of both linear and circular ANRIL species in T2D phenotypes and opens the door for future studies of the molecular mechanisms by which ANRIL impacts cellular function in pancreatic islets.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , RNA Longo não Codificante , Proliferação de Células/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Circular , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA