RESUMO
Oxidative stress is a pivotal factor in the pathogenesis of various cardiovascular diseases. Rhodiola, a traditional Chinese medicine, is recognized for its potent antioxidant properties. Salidroside, a phenylpropanoid glycoside derived from Rhodiola rosea, has shown remarkable antioxidant capabilities. This study aimed to elucidate the potential protective mechanisms of Rhodiola and salidroside against H2O2-induced cardiac apoptosis in H9c2 cardiomyoblast cells. H9c2 cells were exposed to H2O2 for 4 h, and subsequently treated with Rhodiola or salidroside for 24 h. Cell viability and apoptotic pathways were assessed. The involvement of insulin-like growth factor 1 receptor (IGF1R) and the activation of extracellular regulated protein kinases 1/2 (ERK1/2) were investigated. H2O2 (100 µM) exposure significantly induced cardiac apoptosis in H9c2 cells. However, treatment with Rhodiola (12.5, 25, and 50 µg/mL) and salidroside (0.1, 1, and 10 nM) effectively attenuated H2O2-induced cytotoxicity and apoptosis. This protective effect was associated with IGF1R-activated phosphorylation of ERK1/2, leading to the inhibition of Fas-dependent proteins, HIF-1α, Bax, and Bak expression in H9c2 cells. The images from hematoxylin and eosin staining and immunofluorescence assays also revealed the protective effects of Rhodiola and salidroside in H9c2 cells against oxidative damage. Our findings suggest that Rhodiola and salidroside possess antioxidative properties that mitigate H2O2-induced apoptosis in H9c2 cells. The protective mechanisms involve the activation of IGF1R and subsequent phosphorylation of ERK1/2. These results propose Rhodiola and salidroside as potential therapeutic agents for cardiomyocyte cytotoxicity and apoptosis induced by oxidative stress in heart diseases. Future studies may explore their clinical applications in cardiac health.
Assuntos
Apoptose , Glucosídeos , Peróxido de Hidrogênio , Estresse Oxidativo , Fenóis , Receptor IGF Tipo 1 , Rhodiola , Glucosídeos/farmacologia , Fenóis/farmacologia , Apoptose/efeitos dos fármacos , Rhodiola/química , Estresse Oxidativo/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo , Peróxido de Hidrogênio/toxicidade , Linhagem Celular , Animais , Ratos , Sobrevivência Celular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Antioxidantes/farmacologiaRESUMO
To date, few studies have investigated the toxicological effects of the combined use of amphetamine and heroin in the heart. Hence, the aim of this study was to identify indicators for clinical evaluation and prevention of cardiac injury induced by the combined use of amphetamine and heroin. Four different groups were analyzed: (1) normal group (nï¼25ï¼average ageï¼35 ± 6.8); (2) heart disease group (nï¼25ï¼average ageï¼58 ± 17.2); (3) drug abusers (n = 27; average age = 37 ± 7.7); (4) drug abstainers (previous amphetamine-heroin users who had been drug-free for more than two weeks; n = 22; average age = 35 ± 5.6). The activity of MMPs, and levels of TNF-α, IL-6, GH, IGF-I, and several serum biomarkers were examined to evaluate the impact of drug abuse on the heart. The selected plasma biomarkers and classic cardiac biomarkers were significantly increased compared to the normal group. The zymography data showed the changes in cardiac-remodeling enzymes MMP-9 and MMP-2 among combined users of amphetamine and heroin. The levels of TNF-α and IL-6 only increased in the heart disease group. Growth hormone was increased; however, IGF-I level decreased with drug abuse and the level was not restored by abstinence. We speculated that the amphetamine-heroin users might pose risk to initiate heart disease even though the users abstained for more than two weeks. The activity change of MMP-9 and MMP-2 can be a direct reason affecting heart function. The indirect reason may be related to liver damage by drug abuse reduce IGF-1 production to protect heart function.
Assuntos
Cardiopatias , Traumatismos Cardíacos , Dependência de Heroína , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Fator de Crescimento Insulin-Like I , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Heroína , Dependência de Heroína/complicações , Interleucina-6 , Fator de Necrose Tumoral alfa , Anfetamina , BiomarcadoresRESUMO
Background: Premature ventricular complex (PVC) without structural heart disease is mostly viewed as a benign arrhythmia. However, the high burden of PVC causes cardiomyopathy due to intraventricular dyssynchrony. The effects of ectopic contraction on left ventricular (LV) hemodynamics in the structurally normal heart are unclear. Objectives: To examine the effect of PVC burden on LV dimension, LV systolic function, and intraventricular blood flow, and to determine whether ectopic ventricular contraction affects LV hemodynamics. Methods: Patients aged ≥ 18 years with PVC ≥ 5% on Holter recording were enrolled and divided into groups G1 (5-10%), G2 (10-20%), and G3 (≥ 20%). We excluded patients with structural heart diseases, pacemakers, and LV systolic dysfunction [LV ejection fraction (LVEF) < 50%]. Clinical characteristics and routine transthoracic echocardiography parameters were compared. Results: The end-systolic LV internal dimension increased according to the PVC burden from G1 to G3 (p = 0.001). LVEF was inversely associated with PVC burden from G1 to G3 (p = 0.002). The same pattern was seen for LV outflow tract (LVOT) maximal velocity (p = 0.005) and maximal pressure gradient (PG) (p = 0.005), LVOT velocity time integral (VTI) (p = 0.03) and LV stroke volume index (LVSI) (p = 0.008). Conclusions: Systolic function and LV end-systolic dimension were inversely associated with PVC burden. Decreased LVOT flow velocity and PG were related to increased PVC burden. LVOT VTI and LVSI were smaller when the PVC burden exceeded 20%. These negative hemodynamic manifestations of idiopathic PVC were considerable even in structure normal hearts, hence the early elimination of PVC is strongly advised.
RESUMO
The heart is a very dynamic pumping organ working perpetually to maintain a constant blood supply to the whole body to transport oxygen and nutrients. Unfortunately, it is also subjected to various stresses based on physiological or pathological conditions, particularly more vulnerable to damages caused by oxidative stress. In this study, we investigate the molecular mechanism and contribution of IGF-IIRα in endoplasmic reticulum stress induction in the heart under doxorubicin-induced cardiotoxicity. Using in vitro H9c2 cells, in vivo transgenic rat cardiac tissues, siRNAs against CHOP, chemical ER chaperone PBA, and western blot experiments, we found that IGF-IIRα overexpression enhanced ER stress markers ATF4, ATF6, IRE1α, and PERK which were further aggravated by DOX treatment. This was accompanied by a significant perturbation in stress-associated MAPKs such as p38 and JNK. Interestingly, PARKIN, a stress responsive cellular protective mediator was significantly downregulated by IGF-IIRα concomitant with decreased expression of ER chaperone GRP78. Furthermore, ER stress-associated pro-apoptotic factor CHOP was increased considerably in a dose-dependent manner followed by elevated c-caspase-12 and c-caspase-3 activities. Conversely, treatment of H9c2 cells with chemical ER chaperone PBA or siRNA against CHOP abolished the IGF-IIRα-induced ER stress responses. Altogether, these findings suggested that IGF-IIRα contributes to ER stress induction and inhibits cellular stress coping proteins while increasing pro-apoptotic factors feeding into a cardio myocyte damage program that eventually paves the way to heart failure.
Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Miocárdio/metabolismo , Receptor IGF Tipo 2/metabolismo , Animais , Linhagem Celular , Citotoxinas/efeitos adversos , Citotoxinas/farmacologia , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Retículo Endoplasmático/genética , Ratos , Ratos Transgênicos , Receptor IGF Tipo 2/genéticaRESUMO
BACKGROUND: The purpose of this study was to investigate whether or not angiotensin II type 1 receptor blocker irbesartan (ARB) with a partial agonist of PPAR-γ could protect against chronic nocturnal intermittent hypoxia (CIH)-induced cardiac Fas/FasL-mediated to mitochondria-mediated apoptosis. METHODS: Sprague-Dawley rats were in a normoxic control group (CON-G), or rats were in a chronic nocturnal intermittent hypoxia group (HP-G, from 3 to 7% oxygen versus 21% oxygen per forty seconds cycle, nocturnally 8 h per day for 1 month), or rats were in a chronic nocturnal intermittent hypoxia group pretreated with ARB (50 mg/kg/day, S.C.) (ARB-HP-G). Echocardiography, H&E staining, TUNEL staining, and Western blotting were measured in the left ventricle. RESULTS: Hypoxia-induced SIRT1 degradation, Fas receptors, FADD, active caspase-8 and caspase-3 (Fas/FasL apoptotic pathway) and Bax, tBid, active caspase-9 and -3 (mitochondrial apoptotic pathway) and TUNEL-positive apoptosis were reduced in ARB-HP-G when compared with HP-G. IGF-I, IGF1 receptor, p-PI3k, p-Akt, Bcl2, and Bcl-XL (IGF1/PI3K/AKT pro-survival pathway) were increased in ARB-HP-G compared to HP-G. CONCLUSIONS: Our findings suggest that the ARB may prevent cardiac Fas/FasL to mitochondrial apoptotic pathways and enhance cardiac IGF1/PI3K/AKT pro-survival pathway in the sleep apnea model associated with JNK de-activation and SIRT1 upregulation. ARB prevents chronic sleep apnea-enhanced cardiac apoptosis via enhancing survival pathways.
Assuntos
Sirtuína 1 , Síndromes da Apneia do Sono , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Apoptose , Hipóxia , Irbesartana , Miocárdio , Oxigênio , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Sprague-Dawley , Regulação para CimaRESUMO
It has been well-documented that the consumption of deep sea water (DSW) has beneficial effects on myocardial hypertrophy and cardiac apoptosis induced by hypercholesterolemia. However, the molecular mechanisms for the anti-inflammatory effects of DSW on diabetic cardiomyopathy are still largely unclear. The main purpose of this present study was to test the hypothesis that DSW exerts anti-inflammatory effects through the suppression of the TNF-α-mediated signaling pathways. IP injection of streptozotocin (STZ) at the dose of 65 mg/kg was used to establish a diabetes rat model. DSW mineral extracts that diluted in desalinated water were prepared in three different dosages and administered to the rats through gavages for 4 weeks. These dosages are DSW-1X (equivalent to 37 mg Mg2+ /kg/day), 2X (equivalent to 74 mg Mg2+ /kg/day) and 3X (equivalent to 111 mg Mg2+ mg/kg/day). Immunofluorescence staining and Western blot showed that the protein expression level of TNF-α was markedly higher in the STZ-induced diabetic rat hearts than in the control group. Consequently, the phosphorylation levels of the TNF-α-modulated downstream signaling molecules and P38 mitogen-activated protein kinases (MAPKs) were notably elevated in heart tissues of STZ-induced diabetes. These higher phosphorylation levels subsequently upregulated NF-κB-modulated inflammatory mediators, such as cyclooxygenase (COX)-II and inducible nitric oxide synthase (iNOS). However, treatment with DSW as well as MgSO4 , the main mineral in DSW, significantly reversed all the alterations. These findings suggest that DSW has potential as a therapeutic agent for preventing diabetes-related cardiovascular diseases.
Assuntos
Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Minerais/uso terapêutico , Água do Mar/química , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Diabetes Mellitus Experimental/imunologia , Cardiomiopatias Diabéticas/imunologia , Inflamação , Masculino , Minerais/administração & dosagem , Miocárdio/imunologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , EstreptozocinaRESUMO
Doxorubicin (DOX) is an anthracycline antibiotic commonly employed for the treatment of various cancers. However, its therapeutic uses are hampered by side effects associated with cumulative doses during the course of treatment. Whereas deregulation of autophagy in the myocardium has been involved in a variety of cardiovascular diseases, the role of autophagy in DOX-induced cardiomyopathy remains debated. Our earlier studies have shown that DOX treatment in a rat animal model leads to increased expression of the novel stress-inducible protein insulin-like growth factor II receptor-α (IGF-IIRα) in cardiac tissues, which exacerbated the cardiac injury by enhancing oxidative stress and p53-mediated mitochondria-dependent cardiac apoptosis. Through this study, we investigated the contribution of IGF-IIRα to dysregulation of autophagy in heart using both in vitro H9c2 cells (DOX treated, 1 µM) and in vivo transgenic rat models (DOX treated, 5 mg/kg ip for 6 wk) overexpressing IGF-IIRα specifically in the heart. We found that IGF-IIRα primarily localized to mitochondria, causing increased mitochondrial oxidative stress that was severely aggravated by DOX treatment. This was accompanied by a significant perturbation in mitochondrial membrane potential and increased leakage of cytochrome c, causing increased cleaved caspase-3 activity. There were significant alterations in phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated Unc-51 like kinase-1 (p-ULK1), PARKIN, PTEN-induced kinase 1 (PINK1), microtubule-associated protein 1 light chain 3 (LC3), and p62 proteins, which were more severely disrupted under the combined effect of IGF-IIRα overexpression plus DOX. Finally, LysoTracker Red staining showed that IGF-IIRα overexpression causes lysosomal impairment, which was rescued by rapamycin treatment. Taken together, we found that IGF-IIRα leads to mitochondrial oxidative stress, decreased antioxidant levels, disrupted mitochondrial membrane potential, and perturbed mitochondrial autophagy contributing to DOX-induced cardiomyopathy.
Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Cardiopatias/induzido quimicamente , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptor IGF Tipo 2/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Cardiotoxicidade , Linhagem Celular , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Ratos Transgênicos , Receptor IGF Tipo 2/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
Cardiotoxicity by doxorubicin hampers its therapeutic potential as an anticancer drug, but mechanisms leading to cardiotoxicity remain contentious. Through this study, the functional contribution of insulin-like growth factor receptor type II α (IGF-IIRα) which is a novel stress-inducible protein was explored in doxorubicin-induced cardiac stress. Employing both in vitro H9c2 cells and in vivo transgenic rat models (SD-TG [IGF-IIRα]) overexpressing IGF-IIRα specifically in heart, we found that IGF-IIRα leads to cardiac structural abnormalities and functional perturbations that were severely aggravated by doxorubicin-induced cardiac stress. Overexpression of IGF-IIRα leads to cumulative elevation of stress associated cardiac hypertrophy and apoptosis factors. There was a significant reduction of survival associated proteins p-Akt and estrogen receptor ß/α, and abnormal elevation of cardiac hypertrophy markers such as atrial natriuretic peptide, cardiac troponin-I, and apoptosis-inducing agents such as p53, Bax, and cytochrome C, respectively. IGF-IIRα also altered the expressions of AT1R, ERK1/2, and p38 proteins. Besides, IGF-IIRα also increased the reactive oxygen species production in H9c2 cells which were markedly aggravated by doxorubicin treatment. Together, we showed that IGF-IIRα is a novel stress-induced protein that perturbed cardiac homeostasis and cumulatively exacerbated the doxorubicin-induced cardiac injury that perturbed heart functions and ensuing cardiomyopathy.
Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiomegalia/induzido quimicamente , Cardiomiopatias/induzido quimicamente , Doxorrubicina/toxicidade , Cardiopatias Congênitas/induzido quimicamente , Receptor IGF Tipo 2/biossíntese , Animais , Apoptose/efeitos dos fármacos , Cardiotoxicidade/patologia , Linhagem Celular , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Coração/anatomia & histologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Receptor IGF Tipo 2/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
IGF-IIR activation regulates cardiac remodeling leading to apoptosis. Here, we identified the novel IGF-IIRα (150 KDa), a truncated IGF-IIR transcript enhances cardiac apoptosis under high-salt uptake in transgenic rat model. Echocardiographic analysis revealed decline in ejection fraction and fractional shortening percentage in IGF-IIRα (TG) rats. We found that IGF-IIRα TG rats developed severe apoptosis and fibrosis as identified through TUNEL assay and Masson's trichrome staining. Importantly, the heart functioning, apoptosis, and fibrosis were significantly affected under high-salt conditions in IGF-IIRα (TG) rats. Significant upregulation of apoptosis was evident from decreased Bcl-2, p-AKT, and p-PI3K expressions with concomitant increase in Bad, cytochrome C, cleaved caspase 3 levels. We found that, IGF-IIRα highly induced tissue fibrosis through collagen accumulation (col I, col III) and up regulated various fibrotic markers such as tPA, uPA, TGF-ß, and vimentin expressions. The observed upregulation of fibrosis were significantly regulated under high-salt conditions and their over regulation under IGF-IIRα over expressions shows the key role of IGF-IIRα in promoting high-salt induced fibrosis. During IGF-IIRα over expression induced cardiotoxicity, under high salt condition, and it destroys the interaction between CHIP and HSF1, which promotes the degradation of HSF1 and results in upregulation of IGF-IIR/IGF-IIRα expressions. Altogether, the study unveils novel IGF-IIRα in the regulation of cardiac apoptosis and fibrosis under high-salt diet.
Assuntos
Apoptose/genética , Regulação da Expressão Gênica , Miocárdio/patologia , Receptor IGF Tipo 2/genética , Cloreto de Sódio na Dieta/efeitos adversos , Remodelação Ventricular/genética , Animais , Apoptose/efeitos dos fármacos , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Miocárdio/metabolismo , Ratos , Ratos Transgênicos , Remodelação Ventricular/efeitos dos fármacosRESUMO
Cardiovascular diseases have a high prevalence worldwide and constitute the leading causes of mortality. Recently, malfunctioning of ß-catenin signaling has been addressed in hypertensive heart condition. Ang-II is an important mediator of cardiovascular remodeling processes which not only regulates blood pressure but also leads to pathological cardiac changes. However, the contribution of Ang-II/ß-catenin axis in hypertrophied hearts is ill-defined. Employing in vitro H9c2 cells and in vivo spontaneously hypertensive rats (SHR) cardiac tissue samples, western blot analysis, luciferase assays, nuclear-cytosolic protein extracts, and immunoprecipitation assays, we found that under hypertensive condition ß-catenin gets abnormally induced that co-activated LEF1 and lead to cardiac hypertrophy changes by up-regulating the IGF-IIR signaling pathway. We identified putative LEF1 consensus binding site on IGF-IIR promoter that could be regulated by ß-catenin/LEF1 which in turn modulate the expression of cardiac hypertrophy agents. This study suggested that suppression of ß-catenin expression under hypertensive condition could be exploited as a clinical strategy for cardiac pathological remodeling processes.
Assuntos
Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Receptor IGF Tipo 2/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Angiotensina II , Animais , Biomarcadores/metabolismo , Cardiomegalia/patologia , Núcleo Celular/metabolismo , Fator de Transcrição GATA4/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Regiões Promotoras Genéticas/genética , Proteína Quinase C-alfa/metabolismo , Ratos Endogâmicos SHRRESUMO
Mitochondrial dysfunction is a major contributor to myocyte loss and the development of heart failure. Myocytes have quality control mechanisms to retain functional mitochondria by removing damaged mitochondria via specialized autophagy, i.e., mitophagy. The underlying mechanisms of fission affect the survival of cardiomyocytes, and left ventricular function in the heart is poorly understood. Here, we demonstrated the direct effect and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial dynamics in heart failure. We observed that IGF-IIR signaling produced significant changes in mitochondrial morphology and function; such changes were associated with the altered expression and distribution of dynamin-related protein (Drp1) and mitofusin (Mfn2). IGF-IIR signaled extracellular signal-regulated kinase (ERK) activation to promote Drp1 phosphorylation and translocation to mitochondria for mitochondrial fission and mitochondrial dysfunction. Moreover, IGF-IIR signaling triggered Rab9-dependent autophagosome formation by the JNK-mediated phosphorylation of Bcl-2 at serine 87 and promoted ULK1/Beclin 1-dependent autophagic membrane formation. Excessive mitochondrial fission by Drp1 enhanced the Rab9-dependent autophagosome recognition and engulfing of damaged mitochondria and eventually decreased cardiomyocyte viability. Therefore, these results demonstrated the connection between Rab9-dependent autophagosomes and mitochondrial fission in cardiac myocytes, which provides a potential therapeutic strategy for treating heart disease.
Assuntos
Dinaminas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Receptor IGF Tipo 2/metabolismo , Análise de Variância , Animais , Autofagossomos/metabolismo , Autofagia , Linhagem Celular , Feminino , Sistema de Sinalização das MAP Quinases , Dinâmica Mitocondrial , Mitofagia , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
Mitochondria dysfunction is the major characteristic of mitophagy, which is essential in mitochondrial quality control. However, excessive mitophagy contributes to cell death in a number of diseases, including ischemic stroke and hepatotoxicity. Insulin-like growth factor II (IGF-II) and its receptor (IGF-IIR) play vital roles in the development of heart failure during hypertension. We found that IGF-II triggers IGF-IIR receptor activation, causing mitochondria dysfunction, resulting in mitophagy, and cardiomyocyte cell death. These results indicated that IGF-IIR activation triggers mitochondria fragmentation, leading to autophagosome formation, and loss of mitochondria content. These results are associated with Parkin-dependent mitophagy. Additionally, autophagic proteins Atg5, and Atg7 deficiency did not suppress IGF-IIR-induced mitophagy. However, Rab9 knockdown reduced mitophagy and maintained mitochondrial function. These constitutive mitophagies through IGF-IIR activation trigger mitochondria loss and mitochondrial ROS accumulation for cardiomyocyte viability decrease. Together, our results indicate that IGF-IIR predominantly induces mitophagy through the Rab9-dependent alternative autophagy.
Assuntos
Autofagia , Mitocôndrias/metabolismo , Mitofagia , Receptor IGF Tipo 2/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Comunicação Autócrina , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Dependovirus/metabolismo , Feminino , Coração/fisiopatologia , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Mitocôndrias/ultraestrutura , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Especificidade de Órgãos , Comunicação Parácrina , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Doxorubicin (DOX), one useful chemotherapeutic agent, is limited in clinical use because of its serious cardiotoxicity. Growing evidence suggests that angiotensin receptor blockers (ARBs) have cardioprotective effects in DOX-induced cardiomyopathy. However, the detailed mechanisms underlying the action of ARBs on the prevention of DOX-induced cardiomyocyte cell death have yet to be investigated. Our results showed that angiotensin II receptor type I (AT1 R) plays a critical role in DOX-induced cardiomyocyte apoptosis. We found that MAPK signaling pathways, especially ERK1/2, participated in modulating AT1 R gene expression through DOX-induced mitochondrial ROS release. These results showed that several potential heat shock binding elements (HSE), which can be recognized by heat shock factors (HSFs), located at the AT1 R promoter region. HSF2 markedly translocated from the cytoplasm to the nucleus when cardiomyocytes were damaged by DOX. Furthermore, the DNA binding activity of HSF2 was enhanced by DOX via deSUMOylation. Overexpression of HSF2 enhanced DOX-induced cardiomyocyte cell death as well. Taken together, we found that DOX induced mitochondrial ROS release to activate ERK-mediated HSF2 nuclear translocation and AT1 R upregulation causing DOX-damaged heart failure in vitro and in vivo.
Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Cardiopatias/enzimologia , Proteínas de Choque Térmico/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Apoptose , Sítios de Ligação , Cardiotoxicidade , Linhagem Celular , Modelos Animais de Doenças , Ativação Enzimática , Cardiopatias/induzido quimicamente , Cardiopatias/genética , Cardiopatias/patologia , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Regiões Promotoras Genéticas , Interferência de RNA , Ratos Endogâmicos WKY , Receptor Tipo 1 de Angiotensina/genética , Transdução de Sinais , Sumoilação , Transfecção , Regulação para CimaRESUMO
BACKGROUND: Doxorubicin (Dox) is an effective anticancer agent. However, its effectiveness is limited by its cardiotoxic effects. It has also been reported that the mitogen-activated protein kinase family and NF-κB can be activated by Dox treatment. DATS has been shown to be a potent antioxidant with cardioprotective effects. We investigate whether Dox induces cardiac apoptosis through JNK- and ERK-dependent NF-κB upregulation that can be reduced by DATS treatment. METHODS AND MATERIAL: H9c2 cells were treated with 0.5-1.5 µM Dox for 24 hours. Dox promoted apoptosis and ROS generation and inhibited viability in a dose-dependent manner. Then, the phosphorylation levels of JNK, ERK, and NF-κB evaluated by western blot were elevated. We used inhibitors of JNK, ERK, and NF-κB to determine which of these proteins were involved in Dox-induced apoptosis. Furthermore, Dox-exposed cells were treated with DATS at doses of 1, 5, and 10 µM, and the data demonstrated that ROS generation and apoptotic proteins were decreased and that ERK and NF-κB were downregulated in a dose-dependent manner. Additionally, six-week-old rats were divided into three groups (n = 6 per group) designed as an eight-week study. Normal, Dox (at dose 3.75 mg/kg by ip) administered with or without DATS (at dose 40 mg/kg by gavage) treatment groups. The results indicate that cardiac dysfunction, apoptosis, and JNK, ERK, and NF-κB activation by Dox were reversed by treatment with DATS. CONCLUSION: DATS appears to suppress Dox-induced cardiomyocyte apoptosis by inhibiting NADPH oxidase-related ROS production and the downstream JNK/ERK/NF-κB signaling pathway; DATS may possess clinical therapeutic potential by blocking Dox-induced cardiotoxicity.
Assuntos
Compostos Alílicos/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfetos/farmacologia , Acetilcisteína/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Doxorrubicina/toxicidade , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Coração/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos WistarRESUMO
Cardiomyopathy involves changes in myocardial ultrastructure and cardiac hypertrophy. Angiotensin II (AngII) has previously been shown to stimulate the expression of IGF-2 and IGF-2R in H9c2 cardiomyoblasts and increase of blood pressure, and cardiac hypertrophy. Estrogen receptors (ERs) exert protective effects, such as anti-hypertrophy in cadiomyocytes. Tanshinone IIA (TSN), a main active ingredient from a Chinese medical herb, Salvia miltiorrhiza Bunge (Danshen), was shown to protect cardiomyocytes hypertrophy by different stress signals. We aimed to investigate whether TSN protected H9c2 cardiomyocytes from AngII-induced activation of IGF-2R pathway and hypertrophy by mediating through ERs. AngII resulted in H9c2 cardiomyoblast hypertrophy and increased inflammatory molecular markers. These were down-regulated by TSN via estrogen receptors. AngII resulted in elevation in MAPKs, IGF-2R and hypertrophic protein markers. These, again, were reduced by addition of the phytoestrogen with activation of ERs. Finally, AngII induced phosphorylation of heat shock factor-1 (HSF1) and decreased sirtuin-1 (SIRT1). In addition, AngII also caused an increase in distribution of IGF-2R molecules on cell membrane. In contrast, TSN reduced HSF1 phosphorylation and cell surface IGF-2R while elevating SIRT1 via ERs. TSN was capable of attenuating AngII-induced IGF-2R pathway and hypertrophy through ERs in H9c2 cardiomyoblast cells.
Assuntos
Abietanos/administração & dosagem , Cardiomegalia/tratamento farmacológico , Fator de Crescimento Insulin-Like II/genética , Receptor IGF Tipo 2/genética , Angiotensina II/administração & dosagem , Angiotensina II/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Linhagem Celular , Medicamentos de Ervas Chinesas/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/genética , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Receptor IGF Tipo 2/metabolismo , Receptores de Estrogênio/genética , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/genéticaRESUMO
High-fat diets induce obesity, leading to cardiomyocyte fibrosis and autophagy imbalance. In addition, no previous studies have indicated that probiotics have potential health effects associated with cardiac fibrosis and autophagy in obese rats. This study investigates the effects of probiotics on high-fat (HF) diet-induced obesity and cardiac fibrosis and autophagy in rat hearts. Eight-week-old male Wistar rats were separated randomly into five equally sized experimental groups: Normal diet (control) and high-fat (HF) diet groups and groups fed a high-fat diet supplemented with low (HL), medium (HM) or high (HH) doses of multi-strain probiotic powders. These experiments were designed for an 8-week trial period. The myocardial architecture of the left ventricle was evaluated using Masson's trichrome staining and immunohistochemistry staining. Key probiotics-related pathway molecules were analyzed using western blotting. Abnormal myocardial architecture and enlarged interstitial spaces were observed in HF hearts. These interstitial spaces were significantly decreased in groups provided with multi-strain probiotics compared with HF hearts. Western blot analysis demonstrated that key components of the TGF/MMP2/MMP9 fibrosis pathways and ERK5/uPA/ANP cardiac hypertrophy pathways were significantly suppressed in probiotic groups compared to the HF group. Autophagy balance is very important in cardiomyocytes. In this study, we observed that the beclin-1/LC3B/Atg7 autophagy pathway in HF was increased after probiotic supplementation was significantly decreased. Together, these results suggest that oral administration of probiotics may attenuate cardiomyocyte fibrosis and cardiac hypertrophy and the autophagy-signaling pathway in obese rats.
Assuntos
Cardiomegalia/dietoterapia , Cardiomiopatias/dietoterapia , Traumatismos Cardíacos/dietoterapia , Obesidade/dietoterapia , Probióticos/administração & dosagem , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Cardiomegalia/fisiopatologia , Cardiomiopatias/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Traumatismos Cardíacos/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Obesidade/fisiopatologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacosRESUMO
Consumption of deep sea minerals (DSM), such as magnesium, calcium, and potassium, is known to reduce hypercholesterolemia-induced myocardial hypertrophy and cardiac-apoptosis and provide protection against cardiovascular diseases. Heart diseases develop as a lethal complication among diabetic patients usually due to hyperglycemia-induced cardiac-apoptosis that causes severe cardiac-damages, heart failure, and reduced life expectancy. In this study, we investigated the potential of DSM and its related cardio-protection to increase the life expectancy in diabetic rats. In this study, a heart failure rat model was developed by using streptozotocin (65 mg kg(-1) ) IP injection. Different doses of DSM-1× (37 mg kg(-1) day(-1) ), 2× (74 mg kg(-1) day(-1) ) and 3× (111 mg kg(-1) day(-1) ), were administered to the rats through gavages for 4 weeks. The positive effects of DSM on the survival rate of diabetes rats were determined with respect to the corresponding effects of MgSO4 . Further, to understand the mechanism by which DSM enhances the survival of diabetic rats, their potential to regulate cardiac-apoptosis and control cardiac-dysfunction were examined. Echocardiogram, tissue staining, TUNEL assay, and Western blotting assay were used to investigate modulations in the myocardial contractile function and related signaling protein expression. The results showed that DSM regulate apoptosis and complement the cardiomyocyte proliferation by enhancing survival mechanisms. Moreover DSM significantly reduced the mortality rate and enhanced the survival rate of diabetic rats. Experimental results show that DSM administration can be an effective strategy to improve the life expectancy of diabetic subjects by improving cardiac-cell proliferation and by controlling cardiac-apoptosis and associated cardiac-dysfunction. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 769-781, 2016.
Assuntos
Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Fator de Crescimento Insulin-Like I/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Minerais/uso terapêutico , Água do Mar/química , Animais , Glicemia/metabolismo , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Ecocardiografia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/prevenção & controle , Sulfato de Magnésio/farmacologia , Masculino , Minerais/química , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Análise de SobrevidaRESUMO
UNLABELLED: Deep vein thrombosis (DVT) is a potentially catastrophic condition because thrombosis, left untreated, can result in detrimental pulmonary embolism. Yet in the absence of thrombosis, anticoagulation increases the risk of bleeding. In the existing literature, knowledge about the epidemiology of DVT is primarily based on investigations among Caucasian populations. There has been little information available about the epidemiology of DVT in Taiwan, and it is generally believed that DVT is less common in Asian patients than in Caucasian patients. However, DVT is a multifactorial disease that represents the interaction between genetic and environmental factors, and the majority of patients with incident DVT have either inherited thrombophilia or acquired risk factors. Furthermore, DVT is often overlooked. Although symptomatic DVT commonly presents with lower extremity pain, swelling and tenderness, diagnosing DVT is a clinical challenge for physicians. Such a diagnosis of DVT requires a timely systematic assessment, including the use of the Wells score and a D-dimer test to exclude low-risk patients, and imaging modalities to confirm DVT. Compression ultrasound with high sensitivity and specificity is the front-line imaging modality in the diagnostic process for patients with suspected DVT in addition to conventional invasive contrast venography. Most patients require anticoagulation therapy, which typically consists of parenteral heparin bridged to a vitamin K antagonist, with variable duration. The development of non-vitamin K oral anticoagulants has revolutionized the landscape of venous thromboembolism treatment, with 4 agents available,including rivaroxaban, dabigatran, apixaban, and edoxaban. Presently, all 4 drugs have finished their large phase III clinical trial programs and come to the clinical uses in North America and Europe. It is encouraging to note that the published data to date regarding Asian patients indicates that such new therapies are safe and efficacious. Ultimately, our efforts to improve outcomes in patients with DVT rely on the awareness in the scientific and medical community regarding the importance of DVT. KEY WORDS: Combination therapy; Hypertension; α1-blocker.
RESUMO
BACKGROUND: The goal of this study is to determine if Rhodiola Crenulata (RC) has protective effects on mice hearts with severe sleep apnea model. METHODS: Sixty-four C57BL/6 J mice 5-6 months old were distributed into 4 groups i.e. Control group (21% O2, 24 h per day, 8 weeks, n=16); Hypoxia group (Hypoxia: 7% O2 60 s, 20% O2 alternating 60 s, 8 h per day, 8 weeks, n=16); Hypoxia+90RC and Hypoxia+270RC group (Hypoxia for 1st 4 weeks and hypoxia pretreated 90 mg/Kg and 270 mg/Kg Rhodiola Crenulata by oral gavage per day for 2nd 4 weeks, each n=16). Excised hearts from 4 groups of mice were analyzed for heart weight index changes using H&E staining, TUNEL-positive assays and Western Blotting protein. RESULTS: Cardiac widely dispersed TUNEL-positive apoptotic cells in mice hearts were less in Hypoxia+RC90 and Hypoxia+RC270 than those in Hypoxia. Compared with Hypoxia, the protein levels of Fas ligand, Fas death receptors, Fas-Associated Death Domain (FADD), activated caspase 8, and activated caspase 3 (Fas dependent apoptotic pathways) were decreased in Hypoxia+RC90, Hypoxia+RC270. The protein levels of Bad, Bax, t-Bid, activated caspase 9, activated caspase 3 (mitochondria dependent apoptotic pathway) were less in Hypoxia+RC90, Hypoxia+RC270 than those in hypoxia. The protein levels of Bcl2, Bcl-xL, p-Bad (Bcl2-realted anti-apoptotic pathway) and VEGF, p-PI3k, p-AKT (VEGF-related pro-survival pathway) were higher in Hypoxia+RC90, Hypoxia+RC270 than those in hypoxia. CONCLUSIONS: Our findings suggest that Rhodiola Crenulata have protective effects on chronic intermittent hypoxia-induced cardiac widely dispersed apoptosis via Fas-dependent and mitochondria-dependent apoptotic and VEGF-related pro-survival pathway.
Assuntos
Apoptose/efeitos dos fármacos , Cardiopatias/patologia , Coração/efeitos dos fármacos , Miocárdio , Fitoterapia , Rhodiola , Síndromes da Apneia do Sono/patologia , Animais , Caspases/metabolismo , Proteína Ligante Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Cardiopatias/etiologia , Cardiopatias/metabolismo , Cardiopatias/prevenção & controle , Hipóxia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor fas/metabolismoRESUMO
Exposure to tobacco smoke has epidemiologically been linked to the occurrence of cardiovascular disease among nonsmokers but the associated molecular events are not well elucidated yet. When Sprague Dawley rats were exposed to second-hand tobacco cigarette smoke twice a day for a 30 days period at an exposure rate of 10 cigarettes/30 min, they showed adverse effects including reduced left ventricle weight, increased cardiac damages, deteriorated cardiac features, and cardiac fibrosis. Exposure to second-hand smoking (SHS) increased the molecular markers of cardiac fibrosis such as urokinase plasminogen activator and matrix metallopeptidases. The modulations in the protein levels were led by the activation of extracellular signal-regulated kinases (ERK1/2), the transcription factor-specificity protein 1 (SP1), and the fibrogenic master switch-connective for epithelial-mesenchymal transition tissue growth factor there by indicating their effective role in SHS-induced myocardial infraction. Dilong, an edible earthworm extract used in Chinese medicine and its bioactive fibrinolytic enzyme product-lumbrokinase, when administered in rats, restricted the SHS exposure induced cardiac fibrosis and provided cardio-protection. The results show that lumbrokinase and dilong administration can efficiently prevent epidemiological incidence of cardiac disease among SHS-exposed nonsmokers.