Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 26(16): 20975-20989, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30119404

RESUMO

This research demonstrates that a surface plasmon resonance (SPR) imaging technique can effectively measure full-field nanoscale thickness of a liquid water film filled in the receding contact-induced nano-channel. To the authors' knowledge this has not been demonstrated previously. Experimental calibration has been conducted by measuring surface plasmon resonance reflectance depending on the piezometer-controlled water nano-film thickness and comparing the experimental results with the theoretical calculations to show very good agreement. The measured full-field thickness profiles significantly visualize the three-dimensional nano-channel formation filled with liquid water film. It shows that the sensitivity and the resolution in thickness measurement are estimated as 1.21 pixel gray level/nm and 2.5 nm, respectively. The experimentally observed resolution is around 10 nm given the uncertainty in the demonstrated full-field mapping of thickness. From this research, it is demonstrated that SPR imaging successfully measures the thickness of ultrathin liquid film especially below 85 nm in full-field under normal conditions and can effectively characterize the three-dimensional nano-channel formation during the receding contact process.

2.
Environ Sci Technol ; 44(20): 7970-4, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20836548

RESUMO

Through cation exchange capacity assay, nitrogen adsorption-desorption surface area measurements, scanning electron microscopic imaging, infrared spectra and elemental analyses, we characterized biochar materials produced from cornstover under two different pyrolysis conditions, fast pyrolysis at 450 °C and gasification at 700 °C. Our experimental results showed that the cation exchange capacity (CEC) of the fast-pyrolytic char is about twice as high as that of the gasification char as well as that of a standard soil sample. The CEC values correlate well with the increase in the ratios of the oxygen atoms to the carbon atoms (O:C ratios) in the biochar materials. The higher O:C ratio was consistent with the presence of more hydroxyl, carboxylate, and carbonyl groups in the fast pyrolysis char. These results show how control of biomass pyrolysis conditions can improve biochar properties for soil amendment and carbon sequestration. Since the CEC of the fast-pyrolytic cornstover char can be about double that of a standard soil sample, this type of biochar products would be suitable for improvement of soil properties such as CEC, and at the same time, can serve as a carbon sequestration agent.


Assuntos
Recuperação e Remediação Ambiental , Solo , Adsorção , Microscopia Eletrônica de Varredura , Nitrogênio/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Langmuir ; 23(6): 2953-60, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17338500

RESUMO

A microfabricated linear heater array operating in a constant voltage mode has been used to study the effect of nanoparticle size on the evaporation and dryout characteristics of strongly pinned nanofluid droplets. Four different nanofluids have been tested, containing 2-nm Au, 30-nm CuO, 11-nm Al2O3, and 47-nm Al2O3 nanoparticles, each of 5-muL droplets with 0.5 vol % in water. Nanofluid droplets show strong pinning along the droplet perimeter and, upon evaporation, leave a ring-shaped nanoparticle stain. Particle size is seen to have a clear and strong effect on the dryout stain pattern, while heater temperature seems to have little effect. With the assumption of axi-symmetry, tomographic deconvolution of measured data from the linear heater array allows for examination of the spatially and temporally resolved temperature and heat flux characteristics of the evaporating nanofluid droplets.


Assuntos
Nanopartículas/química , Óxido de Alumínio/química , Físico-Química/métodos , Cobre/química , Temperatura Alta , Microfluídica , Modelos Estatísticos , Nanoestruturas , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA