Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G330-G343, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226933

RESUMO

Alterations in endoplasmic reticulum (ER)-mitochondria associations and in mitochondria-associated ER membrane (MAM) behavior have been reported in the brain in several neurodegenerative diseases. Despite the emerging role of the gut-brain axis in neurodegenerative disorders, the biology of MAM in the enteric nervous system (ENS) has not previously been studied. Therefore, we set out to characterize the MAM in the distal colon of wild-type C57BL/6J mice and senescence-accelerated mouse prone 8 (SAMP8), a mouse model of age-related neurodegeneration. We showed for the first time that MAMs are widely present in enteric neurons and that their association is altered in SAMP8 mice. We then examined the functions of MAMs in a primary culture model of enteric neurons and showed that calcium homeostasis was altered in SAMP8 mice when compared with control animals. These findings provide the first detailed characterization of MAMs in the ENS under physiological conditions and during age-associated neurodegeneration. Further investigation of MAM modifications in the ENS in disease may provide valuable information about the possible role of enteric MAMs in neurodegenerative diseases.NEW & NOTEWORTHY Our work shows for the first time the presence of contacts between endoplasmic reticulum and mitochondria in the enteric neurons and that the dynamic of these contacts is affected in these cells from an age-related neurodegeneration mouse model. It provides new insights into the potential role of enteric mitochondria-associated endoplasmic reticulum membrane in neurodegenerative disorders.


Assuntos
Sistema Nervoso Entérico , Doenças Neurodegenerativas , Camundongos , Animais , Membranas Associadas à Mitocôndria , Camundongos Endogâmicos C57BL , Retículo Endoplasmático , Modelos Animais de Doenças
2.
J Cell Sci ; 135(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129196

RESUMO

Recent advances have revealed common pathological changes in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis with related frontotemporal dementia (ALS/FTD). Many of these changes can be linked to alterations in endoplasmic reticulum (ER)-mitochondria signaling, including dysregulation of Ca2+ signaling, autophagy, lipid metabolism, ATP production, axonal transport, ER stress responses and synaptic dysfunction. ER-mitochondria signaling involves specialized regions of ER, called mitochondria-associated membranes (MAMs). Owing to their role in neurodegenerative processes, MAMs have gained attention as they appear to be associated with all the major neurodegenerative diseases. Furthermore, their specific role within neuronal maintenance is being revealed as mutant genes linked to major neurodegenerative diseases have been associated with damage to these specialized contacts. Several studies have now demonstrated that these specialized contacts regulate neuronal health and synaptic transmission, and that MAMs are damaged in patients with neurodegenerative diseases. This Review will focus on the role of MAMs and ER-mitochondria signaling within neurons and how damage of the ER-mitochondria axis leads to a disruption of vital processes causing eventual neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Demência Frontotemporal/metabolismo , Humanos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
3.
J Neural Transm (Vienna) ; 129(9): 1095-1103, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34816335

RESUMO

Alpha-synuclein deposits, the pathological hallmarks of Parkinson's disease, are consistently found in the gastrointestinal tract of parkinsonian subjects. These observations have raised the potential that endoscopically obtainable mucosal biopsies can aid to a molecular diagnosis of the disease. The possible usefulness of mucosal biopsies is, however, not limited to the detection of alpha-synuclein, but also extends to other essential aspects underlying pathophysiological mechanisms of gastrointestinal manifestations in Parkinson's disease. The aim of the current review is to provide an appraisal of the existing studies showing that gastrointestinal biopsies can be used for the analysis of enteric neuronal and glial cell morphology, intestinal epithelial barrier function, and gastrointestinal inflammation in Parkinson's disease. A perspective on the generation of organoids with GI biopsies and the potential use of single-cell and spatial transcriptomic technologies will be also addressed.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Biópsia , Trato Gastrointestinal/química , Trato Gastrointestinal/patologia , Humanos , Neurônios/patologia , Doença de Parkinson/diagnóstico , alfa-Sinucleína/análise
4.
Neurobiol Dis ; 143: 105020, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32682953

RESUMO

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions, many of which are perturbed in Alzheimer's disease. Moreover, damage to ER-mitochondria signaling is seen in cell and transgenic models of Alzheimer's disease. However, as yet there is little evidence that ER-mitochondria signaling is altered in human Alzheimer's disease brains. ER-mitochondria signaling is mediated by interactions between the integral ER protein VAPB and the outer mitochondrial membrane protein PTPIP51 which act to recruit and "tether" regions of ER to the mitochondrial surface. The VAPB-PTPIP51 tethers are now known to regulate a number of ER-mitochondria signaling functions including delivery of Ca2+from ER stores to mitochondria, mitochondrial ATP production, autophagy and synaptic activity. Here we investigate the VAPB-PTPIP51 tethers in post-mortem control and Alzheimer's disease brains. Quantification of ER-mitochondria signaling proteins by immunoblotting revealed loss of VAPB and PTPIP51 in cortex but not cerebellum at end-stage Alzheimer's disease. Proximity ligation assays were used to quantify the VAPB-PTPIP51 interaction in temporal cortex pyramidal neurons and cerebellar Purkinje cell neurons in control, Braak stage III-IV (early/mid-dementia) and Braak stage VI (severe dementia) cases. Pyramidal neurons degenerate in Alzheimer's disease whereas Purkinje cells are less affected. These studies revealed that the VAPB-PTPIP51 tethers are disrupted in Braak stage III-IV pyramidal but not Purkinje cell neurons. Thus, we identify a new pathogenic event in post-mortem Alzheimer's disease brains. The implications of our findings for Alzheimer's disease mechanisms are discussed.


Assuntos
Doença de Alzheimer/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Lobo Temporal/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Autopsia , Retículo Endoplasmático/patologia , Feminino , Humanos , Masculino , Mitocôndrias/patologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Lobo Temporal/patologia
5.
EMBO Rep ; 17(9): 1326-42, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27418313

RESUMO

Defective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles. Here, we show that FUS disrupts the VAPB-PTPIP51 interaction and ER-mitochondria associations. These disruptions are accompanied by perturbation of Ca(2+) uptake by mitochondria following its release from ER stores, which is a physiological read-out of ER-mitochondria contacts. We also demonstrate that mitochondrial ATP production is impaired in FUS-expressing cells; mitochondrial ATP production is linked to Ca(2+) levels. Finally, we demonstrate that the FUS-induced reductions to ER-mitochondria associations and are linked to activation of glycogen synthase kinase-3ß (GSK-3ß), a kinase already strongly associated with ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Retículo Endoplasmático/metabolismo , Demência Frontotemporal/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/ultraestrutura , Ativação Enzimática , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/ultraestrutura , Mutação , Ligação Proteica , Proteína FUS de Ligação a RNA/genética
6.
Acta Neuropathol ; 134(1): 129-149, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28337542

RESUMO

α-Synuclein is strongly linked to Parkinson's disease but the molecular targets for its toxicity are not fully clear. However, many neuronal functions damaged in Parkinson's disease are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling involves close physical associations between the two organelles that are mediated by binding of the integral ER protein vesicle-associated membrane protein-associated protein B (VAPB) to the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). VAPB and PTPIP51 thus act as a scaffold to tether the two organelles. Here we show that α-synuclein binds to VAPB and that overexpression of wild-type and familial Parkinson's disease mutant α-synuclein disrupt the VAPB-PTPIP51 tethers to loosen ER-mitochondria associations. This disruption to the VAPB-PTPIP51 tethers is also seen in neurons derived from induced pluripotent stem cells from familial Parkinson's disease patients harbouring pathogenic triplication of the α-synuclein gene. We also show that the α-synuclein induced loosening of ER-mitochondria contacts is accompanied by disruption to Ca2+ exchange between the two organelles and mitochondrial ATP production. Such disruptions are likely to be particularly damaging to neurons that are heavily dependent on correct Ca2+ signaling and ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Proteínas de Transporte Vesicular/metabolismo , alfa-Sinucleína/metabolismo , Animais , Cátions Bivalentes/metabolismo , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Tirosina Fosfatases/metabolismo , Ratos Sprague-Dawley , alfa-Sinucleína/genética
7.
Contact (Thousand Oaks) ; 7: 25152564241244941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585502

RESUMO

Changes in the connections between the endoplasmic reticulum (ER) and mitochondria, as well as alterations in mitochondria-associated ER membrane (MAM) signalling, have been documented in various neurodegenerative diseases affecting the brain. Despite the growing recognition of the significance of the gut-brain axis in neurodegenerative conditions, there has been no prior investigation into the biology of MAM within the enteric nervous system (ENS). Our recent research reveals, for the first time, the existence of connections between the ER and mitochondria within enteric neurons. Additionally, we observed alterations in the dynamics of these connections in the enteric neurons from a mouse model exhibiting age-related neurodegeneration. These findings provide the first detailed characterization of MAM in the ENS under physiological conditions and in a mouse model of age-associated neurodegeneration and shed new light on the potential role of enteric MAM in the context of neurodegenerative disorders.

8.
Acta Neuropathol Commun ; 12(1): 32, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395965

RESUMO

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are clinically linked major neurodegenerative diseases. Notably, TAR DNA-binding protein-43 (TDP43) accumulations are hallmark pathologies of FTD/ALS and mutations in the gene encoding TDP43 cause familial FTD/ALS. There are no cures for FTD/ALS. FTD/ALS display damage to a broad range of physiological functions, many of which are regulated by signaling between the endoplasmic reticulum (ER) and mitochondria. This signaling is mediated by the VAPB-PTPIP51 tethering proteins that serve to recruit regions of ER to the mitochondrial surface so as to facilitate inter-organelle communications. Several studies have now shown that disrupted ER-mitochondria signaling including breaking of the VAPB-PTPIP51 tethers are features of FTD/ALS and that for TDP43 and other familial genetic FTD/ALS insults, this involves activation of glycogen kinase-3ß (GSK3ß). Such findings have prompted suggestions that correcting damage to ER-mitochondria signaling and the VAPB-PTPIP51 interaction may be broadly therapeutic. Here we provide evidence to support this notion. We show that overexpression of VAPB or PTPIP51 to enhance ER-mitochondria signaling corrects mutant TDP43 induced damage to inositol 1,4,5-trisphosphate (IP3) receptor delivery of Ca2+ to mitochondria which is a primary function of the VAPB-PTPIP51 tethers, and to synaptic function. Moreover, we show that ursodeoxycholic acid (UDCA), an FDA approved drug linked to FTD/ALS and other neurodegenerative diseases therapy and whose precise therapeutic target is unclear, corrects TDP43 linked damage to the VAPB-PTPIP51 interaction. We also show that this effect involves inhibition of TDP43 mediated activation of GSK3ß. Thus, correcting damage to the VAPB-PTPIP51 tethers may have therapeutic value for FTD/ALS and other age-related neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Proteínas de Transporte Vesicular , Humanos , Esclerose Lateral Amiotrófica/patologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Sinapses/patologia , Proteinopatias TDP-43/metabolismo , Proteínas de Transporte Vesicular/genética
9.
J Neurochem ; 125(4): 512-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23278133

RESUMO

There is growing evidence supporting a role of extracellular alpha-synuclein in the spreading of Parkinson's disease (PD) pathology. Recent pathological studies have raised the possibility that the enteric nervous system (ENS) is one of the initial sites of alpha-synuclein pathology in PD. We therefore undertook this survey to determine whether alpha-synuclein can be secreted by enteric neurons. Alpha-synuclein secretion was assessed by immunoblot analysis of the culture medium from primary culture of ENS. We show that alpha-synuclein is physiologically secreted by enteric neurons via a conventional, endoplasmic reticulum/Golgi-dependent exocytosis, in a neuronal activity-regulated manner. Our study is the first to evidence that enteric neurons are capable of secreting alpha-synuclein, thereby providing new insights into the role of the ENS in the pathophysiology of PD.


Assuntos
Sistema Nervoso Entérico/metabolismo , Intestino Delgado/inervação , Neurônios/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Western Blotting , Brefeldina A/farmacologia , Colforsina/farmacologia , Sistema Nervoso Entérico/citologia , Exocitose/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Cultura Primária de Células , Inibidores da Síntese de Proteínas/farmacologia , Ratos
10.
Neurogastroenterol Motil ; 34(6): e14354, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35279896

RESUMO

BACKGROUND: It is now well established that phosphorylated alpha-synuclein histopathology, the pathologic hallmark of Parkinson's disease (PD) is not limited to the brain but also extends to the enteric nervous system (ENS). This observation led to the hypothesis that the ENS could play a pivotal role in the development of PD. Research on the enteric synucleinopathy has, however, been hampered by difficulties in detecting phosphorylated alpha-synuclein in the ENS by Western blotting, even when the transferred membrane is fixed with an optimized protocol. This suggests that the available antibodies used in previous studies lacked of sensitivity for the detection of phosphorylated alpha-synuclein at Ser129 in enteric neurons. Here, we evaluated three recent commercially available phospho-alpha-synuclein antibodies and compared them to two antibodies used in previous research. METHODS: The specificity and sensitivity of the 5 antibodies were evaluated by Western blot performed with recombinant alpha-synuclein and with protein lysates from rat primary cultures of ENS. In primary culture of ENS, additional experiments were performed with the most specific antibody in order to modulate alpha-synuclein phosphorylation and to validate its utilization in immunofluorescence experiments. RESULTS: The rabbit monoclonal antibody D1R1R uniquely and robustly detected endogenous phosphorylated alpha-synuclein at Ser129 in rat primary culture of ENS without any non-specific bands, allowing for a reliable analysis of phosphorylated alpha-synuclein regulation by pharmacologic means. CONCLUSIONS AND INFERENCES: Using D1R1R antibody together with the optimized protocol for membrane fixation may help deciphering the signaling pathways involved in enteric alpha-synuclein post-translational regulation in PD.


Assuntos
Sistema Nervoso Entérico , Doença de Parkinson , Animais , Western Blotting , Sistema Nervoso Entérico/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Ratos , alfa-Sinucleína
11.
Front Cell Dev Biol ; 10: 920947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120587

RESUMO

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of fundamental physiological processes. This signaling involves close physical contacts between the two organelles that are mediated by the VAPB-PTPIP51 ″tethering" proteins. The VAPB-PTPIP51 tethers facilitate inositol 1,4,5-trisphosphate (IP3) receptor delivery of Ca2+ from ER to mitochondria. Damage to the tethers is seen in Alzheimer's disease, Parkinson's disease and frontotemporal dementia with related amyotrophic lateral sclerosis (FTD/ALS). Understanding the mechanisms that regulate the VAPB-PTPIP51 interaction thus represents an important area of research. Recent studies suggest that an FFAT motif in PTPIP51 is key to its binding to VAPB but this work relies on in vitro studies with short peptides. Cellular studies to support this notion with full-length proteins are lacking. Here we address this issue. Immunoprecipitation assays from transfected cells revealed that deletion of the PTPIP51 FFAT motif has little effect on VAPB binding. However, mutation and deletion of a nearby coiled-coil domain markedly affect this binding. Using electron microscopy, we then show that deletion of the coiled-coil domain but not the FFAT motif abrogates the effect of PTPIP51 on ER-mitochondria contacts. Finally, we show that deletion of the coiled-coil domain but not the FFAT motif abrogates the effect of PTPIP51 on the IP3 receptor-mediated delivery of Ca2+ to mitochondria. Thus, the coiled-coil domain is essential for PTPIP51 ER-mitochondria signaling functions.

12.
J Neurochem ; 115(3): 694-706, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20731759

RESUMO

Accumulated evidence emphasizes the importance of α-synuclein expression levels in Parkinson's disease (PD) pathogenesis. PD is a multicentric disorder that affects the enteric nervous system (ENS), whose involvement may herald the degenerative process in the CNS. We therefore undertook the present study to investigate the mechanisms involved in the regulation of expression of α-synuclein in the ENS. The regulation of α-synuclein expression was assessed by qPCR and western blot analysis in rat primary culture of ENS treated with KCl and forskolin. A pharmacological approach was used to decipher the signaling pathways involved. Intraperitoneal injections of Bay K-8644 and forskolin were performed in mice, whose proximal colons were further analyzed for α-synuclein expression. Depolarization and forskolin increased α-synuclein mRNA and protein expression in primary cultures of ENS, although L-type calcium channel and protein kinase A, respectively. Both stimuli increased α-synuclein expression through a Ras/extracellular signal-regulated kinases pathway. An increase in α-synuclein expression was also observed in vivo in the ENS of mice injected with Bay K-8644 or forskolin. In conclusion, we have identified stimuli leading to α-synuclein over-expression in the ENS, which could be critical in the initiation of the pathological process in PD.


Assuntos
AMP Cíclico/farmacologia , Sistema Nervoso Entérico/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/biossíntese , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Animais , Western Blotting , Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Colforsina/farmacologia , Eletrofisiologia , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/efeitos dos fármacos , Feminino , Imuno-Histoquímica , Indicadores e Reagentes , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas ras/metabolismo
13.
Eur J Neurosci ; 30(5): 735-41, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19712093

RESUMO

Parkinson's disease is the second most common neurodegenerative disease after Alzheimer's disease. It has been classically considered that the pathological hallmarks of Parkinson's disease, namely Lewy bodies and Lewy neurites, affect primarily the substantia nigra. Nevertheless, it has become increasingly evident in recent years that Parkinson's disease is a multicentric neurodegenerative process that affects several neuronal structures outside the substantia nigra, among which is the enteric nervous system. Remarkably, recent reports have shown that the lesions in the enteric nervous system occurred at a very early stage of the disease, even before the involvement of the central nervous system. This led to the postulate that the enteric nervous system could be critical in the pathophysiology of Parkinson's disease, as it could represent a route of entry for a putative environmental factor to initiate the pathological process (Braak's hypothesis). Besides their putative role in the spreading of the pathological process, it has also been suggested that the pathological alterations within the enteric nervous system could be involved in the gastrointestinal dysfunction frequently encountered by parkinsonian patients. The scope of the present article is to review the available studies on the enteric nervous system in Parkinson's disease patients and in animal models of the disease. We further discuss the strategies that will help in our understanding of the roles of the enteric nervous system, both in the pathophysiology of the disease and in the pathophysiology of the gastrointestinal symptoms.


Assuntos
Sistema Nervoso Entérico/patologia , Neurônios/patologia , Doença de Parkinson/patologia , Animais , Sistema Nervoso Central/patologia , Humanos , Vias Neurais/patologia
14.
Acta Neuropathol Commun ; 7(1): 35, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30841933

RESUMO

Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions. This signaling involves close physical contacts between the two organelles that are mediated by "tethering proteins" that function to recruit regions of ER to the mitochondrial surface. The ER protein, vesicle-associated membrane protein-associated protein B (VAPB) and the mitochondrial membrane protein, protein tyrosine phosphatase interacting protein-51 (PTPIP51), interact to form one such tether. Recently, damage to ER-mitochondria signaling involving disruption of the VAPB-PTPIP51 tethers has been linked to the pathogenic process in Parkinson's disease, fronto-temporal dementia (FTD) and related amyotrophic lateral sclerosis (ALS). Loss of neuronal synaptic function is a key feature of Parkinson's disease and FTD/ALS but the roles that ER-mitochondria signaling and the VAPB-PTPIP51 tethers play in synaptic function are not known. Here, we demonstrate that the VAPB-PTPIP51 tethers regulate synaptic activity. VAPB and PTPIP51 localise and form contacts at synapses, and stimulating neuronal activity increases ER-mitochondria contacts and the VAPB-PTPIP51 interaction. Moreover, siRNA loss of VAPB or PTPIP51 perturbs synaptic function and dendritic spine morphology. Our results reveal a new role for the VAPB-PTPIP51 tethers in neurons and suggest that damage to ER-mitochondria signaling contributes to synaptic dysfunction in Parkinson's disease and FTD/ALS.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Retículo Endoplasmático/química , Hipocampo/química , Hipocampo/metabolismo , Proteínas Interatuantes com Canais de Kv/análise , Proteínas Mitocondriais/análise , Neurônios/química , Proteínas Tirosina Fosfatases/análise , Ratos , Sinapses/química
15.
Cell Death Dis ; 9(3): 327, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491392

RESUMO

Fronto-temporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two related and incurable neurodegenerative diseases. Features of these diseases include pathological protein inclusions in affected neurons with TAR DNA-binding protein 43 (TDP-43), dipeptide repeat proteins derived from the C9ORF72 gene, and fused in sarcoma (FUS) representing major constituent proteins in these inclusions. Mutations in C9ORF72 and the genes encoding TDP-43 and FUS cause familial forms of FTD/ALS which provides evidence to link the pathology and genetics of these diseases. A large number of seemingly disparate physiological functions are damaged in FTD/ALS. However, many of these damaged functions are regulated by signalling between the endoplasmic reticulum and mitochondria, and this has stimulated investigations into the role of endoplasmic reticulum-mitochondria signalling in FTD/ALS disease processes. Here, we review progress on this topic.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Demência/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência/genética , Retículo Endoplasmático/genética , Humanos , Mitocôndrias/genética , Transdução de Sinais
16.
Sci Rep ; 8(1): 9033, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899557

RESUMO

Mitochondrial dysfunction is implicated in many neurodegenerative diseases including Parkinson's disease (PD). Induced pluripotent stem cells (iPSCs) provide a unique cell model for studying neurological diseases. We have established a high-content assay that can simultaneously measure mitochondrial function, morphology and cell viability in iPSC-derived dopaminergic neurons. iPSCs from PD patients with mutations in SNCA and unaffected controls were differentiated into dopaminergic neurons, seeded in 384-well plates and stained with the mitochondrial membrane potential dependent dye TMRM, alongside Hoechst-33342 and Calcein-AM. Images were acquired using an automated confocal screening microscope and single cells were analysed using automated image analysis software. PD neurons displayed reduced mitochondrial membrane potential and altered mitochondrial morphology compared to control neurons. This assay demonstrates that high content screening techniques can be applied to the analysis of mitochondria in iPSC-derived neurons. This technique could form part of a drug discovery platform to test potential new therapeutics for PD and other neurodegenerative diseases.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Mutação , Análise de Célula Única/métodos , alfa-Sinucleína/metabolismo , Benzimidazóis , Diferenciação Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , Humanos , Potencial da Membrana Mitocondrial/genética , Microscopia Confocal , Mitocôndrias/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Rodaminas , alfa-Sinucleína/genética
17.
Acta Neuropathol Commun ; 6(1): 65, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30037345

RESUMO

Tau is normally a highly soluble phosphoprotein found predominantly in neurons. Six different isoforms of tau are expressed in the adult human CNS. Under pathological conditions, phosphorylated tau aggregates are a defining feature of neurodegenerative disorders called tauopathies. Recent findings have suggested a potential role of the gut-brain axis in CNS homeostasis, and therefore we set out to examine the isoform profile and phosphorylation state of tau in the enteric nervous system (ENS) under physiological conditions and in tauopathies. Surgical specimens of human colon from controls, Parkinson's disease (PD) and progressive supranuclear palsy (PSP) patients were analyzed by Western Blot and immunohistochemistry using a panel of anti-tau antibodies. We found that adult human ENS primarily expresses two tau isoforms, localized in the cell bodies and neuronal processes. We did not observe any difference in the enteric tau isoform profile and phosphorylation state between PSP, PD and control subjects. The htau mouse model of tauopathy also expressed two main isoforms of human tau in the ENS, and there were no apparent differences in ENS tau localization or phosphorylation between wild-type and htau mice. Tau in both human and mouse ENS was found to be phosphorylated but poorly susceptible to dephosphorylation with lambda phosphatase. To investigate ENS tau phosphorylation further, primary cultures from rat enteric neurons, which express four isoforms of tau, were pharmacologically manipulated to show that ENS tau phosphorylation state can be regulated, at least in vitro. Our study is the first to characterize tau in the rodent and human ENS. As a whole, our findings provide a basis to unravel the functions of tau in the ENS and to further investigate the possibility of pathological changes in enteric neuropathies and tauopathies.


Assuntos
Sistema Nervoso Entérico/metabolismo , Doença de Parkinson/patologia , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/metabolismo , Idoso , Animais , Anti-Infecciosos/farmacologia , Benzofenantridinas/farmacologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Colo/metabolismo , Colo/patologia , Embrião de Mamíferos , Sistema Nervoso Entérico/efeitos dos fármacos , Feminino , Humanos , Isoquinolinas/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Plexo Mientérico/metabolismo , Gravidez , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Plexo Submucoso/metabolismo , Tubulina (Proteína)/metabolismo , Ubiquitina Tiolesterase/metabolismo , Adulto Jovem , Proteínas tau/genética
18.
Autophagy ; 13(7): 1250-1251, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28548902

RESUMO

The endoplasmic reticulum (ER) and mitochondria form tight functional contacts that regulate several key cellular processes. The formation of these contacts involves "tethering proteins" that function to recruit regions of ER to mitochondria. The integral ER protein VAPB (VAMP associated protein B and C) binds to the outer mitochondrial membrane protein, RMDN3/PTPIP51 (regulator of microtubule dynamics 3) to form one such set of tethers. Recently, we showed that the VAPB-RMDN3 tethers regulate macroautophagy/autophagy. Small interfering RNA (siRNA) knockdown of VAPB or RMDN3 to loosen ER-mitochondria contacts stimulates autophagosome formation, whereas overexpression of VAPB or RMDN3 to tighten contacts inhibit their formation. Artificial tethering of ER and mitochondria via expression of a synthetic linker protein also reduces autophagy and this artificial tether rescues the effects of VAPB- or RMDN3-targeted siRNA loss on autophagosome formation. Finally, our studies revealed that the modulatory effects of ER-mitochondria contacts on autophagy involve their role in mediating ITPR (inositol 1,4,5-trisphosphate receptor) delivery of Ca2+ from ER stores to mitochondria.


Assuntos
Autofagia , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais
19.
Curr Biol ; 27(3): 371-385, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132811

RESUMO

Mitochondria form close physical associations with the endoplasmic reticulum (ER) that regulate a number of physiological functions. One mechanism by which regions of ER are recruited to mitochondria involves binding of the ER protein VAPB to the mitochondrial protein PTPIP51, which act as scaffolds to tether the two organelles. Here, we show that the VAPB-PTPIP51 tethers regulate autophagy. We demonstrate that overexpression of VAPB or PTPIP51 to tighten ER-mitochondria contacts impairs, whereas small interfering RNA (siRNA)-mediated loss of VAPB or PTPIP51 to loosen contacts stimulates, autophagosome formation. Moreover, we show that expression of a synthetic linker protein that artificially tethers ER and mitochondria also reduces autophagosome formation, and that this artificial tether rescues the effects of siRNA loss of VAPB or PTPIP51 on autophagy. Thus, these effects of VAPB and PTPIP51 manipulation on autophagy are a consequence of their ER-mitochondria tethering function. Interestingly, we discovered that tightening of ER-mitochondria contacts by overexpression of VAPB or PTPIP51 impairs rapamycin- and torin 1-induced, but not starvation-induced, autophagy. This suggests that the regulation of autophagy by ER-mitochondria signaling is at least partly dependent upon the nature of the autophagic stimulus. Finally, we demonstrate that the mechanism by which the VAPB-PTPIP51 tethers regulate autophagy involves their role in mediating delivery of Ca2+ to mitochondria from ER stores. Thus, our findings reveal a new molecular mechanism for regulating autophagy.


Assuntos
Autofagia , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Sanguíneas/farmacologia , Cálcio/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Imunossupressores/farmacologia , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/genética , RNA Interferente Pequeno/genética , Sirolimo/farmacologia , Inanição , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
20.
Trends Neurosci ; 39(3): 146-157, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26899735

RESUMO

Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis with associated frontotemporal dementia (ALS/FTD) are major neurodegenerative diseases for which there are no cures. All are characterised by damage to several seemingly disparate cellular processes. The broad nature of this damage makes understanding pathogenic mechanisms and devising new treatments difficult. Can the different damaged functions be linked together in a common disease pathway and which damaged function should be targeted for therapy? Many functions damaged in neurodegenerative diseases are regulated by communications that mitochondria make with a specialised region of the endoplasmic reticulum (ER; mitochondria-associated ER membranes or 'MAM'). Moreover, several recent studies have shown that disturbances to ER-mitochondria contacts occur in neurodegenerative diseases. Here, we review these findings.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Retículo Endoplasmático/ultraestrutura , Humanos , Mitocôndrias/ultraestrutura , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA