Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell Microbiol ; 22(1): e13115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509891

RESUMO

Mycobacterium tuberculosis (Mtb) kills infected macrophages through necroptosis, a programmed cell death that enhances mycobacterial replication and dissemination. The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of Mtb in macrophages and induces necroptosis by NAD+ hydrolysis. Here, we show that the catalytic activity of TNT triggers the production of reactive oxygen species (ROS) in Mtb-infected macrophages causing cell death and promoting mycobacterial replication. TNT induces ROS formation both by activating necroptosis and by a necroptosis-independent mechanism. Most of the detected ROS originate in mitochondria as a consequence of opening the mitochondrial permeability transition pore. However, a significant part of ROS is produced by mechanisms independent of TNT and necroptosis. Expressing only the tnt gene in Jurkat T-cells also induces lethal ROS formation indicating that these molecular mechanisms are not restricted to macrophages. Both the antioxidant N-acetyl-cysteine and replenishment of NAD+ by providing nicotinamide reduce ROS levels in Mtb-infected macrophages, protect them from cell death, and restrict mycobacterial replication. Our results indicate that a host-directed therapy combining replenishment of NAD+ with inhibition of necroptosis and/or antioxidants might improve the health status of TB patients and augment antibacterial TB chemotherapy.


Assuntos
Toxinas Bacterianas/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Mycobacterium tuberculosis/patogenicidade , NAD/metabolismo , Estresse Oxidativo , Humanos , Hidrólise , Células Jurkat , Mycobacterium tuberculosis/enzimologia , NAD+ Nucleosidase/metabolismo , Necroptose , Espécies Reativas de Oxigênio/metabolismo , Células THP-1
2.
Environ Microbiol ; 21(8): 3118-3139, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31206984

RESUMO

Vibrio vulnificus is a siderophilic pathogen spreading due to global warming. The zoonotic strains constitute a clonal-complex related to fish farms that are distributed worldwide. In this study, we applied a transcriptomic and single gene approach and discover that the zoonotic strains bypassed the iron requirement of the species thanks to the acquisition of two iron-regulated outer membrane proteins (IROMPs) involved in resistance to fish innate immunity. Both proteins have been acquired by horizontal gene transfer and are contributing to the successful spreading of this clonal-complex. We have also discovered that the zoonotic strains express a virulent phenotype in the blood of its main susceptible hosts (iron-overloaded humans and healthy eels) by combining a host-specific protective envelope with the common expression of two toxins (VvhA and RtxA1), one of which (RtxA1) is directly involved in sepsis. Finally, we found that both IROMPs are also present in other fish pathogenic species and have recently been transmitted to the phylogenetic lineage involved in human primary sepsis after raw seafood ingestion. Together our results highlight the potential hazard that the aquaculture industry poses to public health, which is of particular relevance in the context of a warming world.


Assuntos
Doenças dos Peixes/microbiologia , Sepse/veterinária , Vibrioses/veterinária , Vibrio vulnificus/fisiologia , Zoonoses , Aclimatação , Animais , Peixes , Transferência Genética Horizontal , Humanos , Imunidade Inata , Ferro/metabolismo , Filogenia , Sepse/microbiologia , Vibrioses/microbiologia , Vibrio vulnificus/genética
3.
Environ Microbiol ; 18(11): 4005-4022, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27348505

RESUMO

In this study, we aimed to analyze the global response to iron in the broad-range host pathogen Vibrio vulnificus under the hypothesis that iron is one of the main signals triggering survival mechanisms both inside and outside its hosts. To this end, we selected a strain from the main zoonotic clonal-complex, obtained a mutant in the ferric-uptake-regulator (Fur), and analyzed their transcriptomic profiles in both iron-excess and iron-poor conditions by using a strain-specific microarray platform. Among the genes differentially expressed, we identified around 250 as putatively involved in virulence and survival-related mechanisms. Then, we designed and performed a series of in vivo and in vitro tests to find out if the processes highlighted by the microarray experiments were in fact under iron and/or Fur control. Our results support the hypothesis that iron acts as a niche marker, not always through Fur, for V. vulnificus controlling its entire life cycle. This ranges from survival in the marine environment, including motility and chemotaxis, to survival in the blood of their hosts, including host-specific mechanisms of resistance to innate immunity. These mechanisms allow the bacterium to multiply and persist inside and between their hosts.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Vibrioses/microbiologia , Vibrio vulnificus/metabolismo , Zoonoses/microbiologia , Animais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Vibrio vulnificus/genética , Virulência
4.
Environ Microbiol ; 17(6): 2076-89, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25630302

RESUMO

Vibrio vulnificus is a marine bacterium associated with human and fish (mainly farmed eels) diseases globally known as vibriosis. The ability to infect and overcome eel innate immunity relies on a virulence plasmid (pVvbt2) specific for biotype 2 (Bt2) strains. In the present study, we demonstrated that pVvbt2 encodes a host-specific iron acquisition system that depends on an outer membrane receptor for eel transferrin called Vep20. The inactivation of vep20 did not affect either bacterial growth in human plasma or virulence for mice, while bacterial growth in eel blood/plasma was abolished and virulence for eels was significantly impaired. Furthermore, vep20 is an iron-regulated gene overexpressed in eel blood during artificially induced vibriosis both in vitro and in vivo. Interestingly, homologues to vep20 were identified in the transferable plasmids of two fish pathogen species of broad-host range, Vibrio harveyi (pVh1) and Photobacterium damselae subsp. damselae (pPHDD1). These data suggest that Vep20 belongs to a new family of plasmid-encoded fish-specific transferrin receptors, and the acquisition of these plasmids through horizontal gene transfer is likely positively selected in the fish-farming environment. Moreover, we propose Ftbp (fish transferrin binding proteins) as a formal name for this family of proteins.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/metabolismo , Doenças dos Peixes/microbiologia , Ferro/metabolismo , Receptores da Transferrina/genética , Vibrioses/microbiologia , Vibrio vulnificus/metabolismo , Animais , Enguias/sangue , Enguias/microbiologia , Transferência Genética Horizontal , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Photobacterium/genética , Photobacterium/patogenicidade , Plasmídeos/genética , Vibrio vulnificus/genética
5.
Fish Shellfish Immunol ; 43(2): 502-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25613341

RESUMO

Vibrio vulnificus is an aquatic gram-negative bacterium that causes a systemic disease in eels called warm-water vibriosis. Natural disease occurs via water born infection; bacteria attach to the gills (the main portal of entry) and spread to the internal organs through the bloodstream, provoking host death by haemorrhagic septicaemia. V. vulnificus produces a toxin called RtxA13 that hypothetically interferes with the eel immune system facilitating bacterial invasion and subsequent death by septic shock. The aim of this work was to study the early steps of warm-water vibriosis by analysing the expression of three marker mRNA transcripts related to pathogen recognition (tlr2 and tlr5) and inflammation (il-8) in the gills of eels infected by immersion with either the pathogen or a mutant deficient in rtxA13. Results indicate a differential response that is linked to the rtx toxin in the expression levels of the three measured mRNA transcripts. The results suggest that eels are able to distinguish innocuous from harmful microorganisms by the local action of their toxins rather than by surface antigens. Finally, the cells that express these transcripts in the gills are migratory cells primarily located in the second lamellae that re-locate during infection suggesting the activation of a specific immune response to pathogen invasion in the gill.


Assuntos
Anguilla , Toxinas Bacterianas/farmacologia , Doenças dos Peixes/imunologia , Vibrioses/veterinária , Vibrio vulnificus/fisiologia , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Regulação da Expressão Gênica , Brânquias/imunologia , Brânquias/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vibrioses/genética , Vibrioses/imunologia , Vibrioses/microbiologia
6.
Infect Immun ; 82(2): 731-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24478087

RESUMO

The zoonotic serovar of Vibrio vulnificus (known as biotype 2 serovar E) is the etiological agent of human and fish vibriosis. The aim of the present work was to discover the role of the vulnibactin- and hemin-dependent iron acquisition systems in the pathogenicity of this zoonotic serovar under the hypothesis that both are host-nonspecific virulence factors. To this end, we selected three genes for three outer membrane receptors (vuuA, a receptor for ferric vulnibactin, and hupA and hutR, two hemin receptors), obtained single and multiple mutants as well as complemented strains, and tested them in a series of in vitro and in vivo assays, using eels and mice as animal models. The overall results confirm that hupA and vuuA, but not hutR, are host-nonspecific virulence genes and suggest that a third undescribed host-specific plasmid-encoded system could also be used by the zoonotic serovar in fish. hupA and vuuA were expressed in the internal organs of the animals in the first 24 h of infection, suggesting that they may be needed to achieve the population size required to trigger fatal septicemia. vuuA and hupA were sequenced in strains representative of the genetic diversity of this species, and their phylogenies were reconstructed by multilocus sequence analysis of selected housekeeping and virulence genes as a reference. Given the overall results, we suggest that both genes might form part of the core genes essential not only for disease development but also for the survival of this species in its natural reservoir, the aquatic environment.


Assuntos
Amidas/metabolismo , Hemina/metabolismo , Ferro/metabolismo , Oxazóis/metabolismo , Vibrio vulnificus/metabolismo , Vibrio vulnificus/patogenicidade , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Vibrioses/microbiologia , Virulência
7.
Environ Microbiol ; 15(2): 419-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22943291

RESUMO

Vibrio vulnificus biotype 2 is a polyphyletic group whose virulence for fish relies on a plasmid. This plasmid contains an rtxA gene duplicated in the small chromosome that encodes a MARTX (Multifunctional, Autoprocessing Repeats-in-Toxin) unique within the species in domain structure (MARTX type III). To discover the role of this toxin in the fitness of this biotype in the fish-farming environment, single- and double-knockout mutants were isolated from a zoonotic strain and analysed in a series of in vivo and in vitro experiments with eel, fish cell lines and amoebae isolated from gills. Mice, murine and human cell lines were also assayed for comparative purposes. The results suggest that MARTX type III is involved in the lysis of a wide range of eukaryotic cells, including the amoebae, erythrocytes, epithelial cells and phagocytes after bacterium-cell contact. In fish, MARTX type III may act as a toxin involved in the onset of septic shock, while in mice it may promote bacterial colonization by preventing phagocytosis of bacterial cells. Moreover, this toxin could protect bacteria from predation by amoebae, which would increase bacterial survival outside the host and would explain the fitness of this biotype in the fish-farming environment.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Vibrioses/veterinária , Vibrio vulnificus/genética , Vibrio vulnificus/patogenicidade , Fatores de Virulência , Amoeba/microbiologia , Animais , Linhagem Celular , Enguias/microbiologia , Células Epiteliais/microbiologia , Doenças dos Peixes/microbiologia , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Fagócitos/microbiologia , Fagocitose , Plasmídeos/genética , Vibrioses/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Br J Nutr ; 108(2): 208-17, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22011563

RESUMO

Proanthocyanidins have been shown to improve postprandial hypertriacylglycerolaemia. The present study aims to determine the actual contribution of chylomicrons (CM) and VLDL in the hypotriacylglycerolaemic action of grape seed proanthocyanidin extract (GSPE) in the postprandial state and to characterise the mechanisms by which the GSPE treatment reduces TAG-rich lipoproteins in vivo. A plasma lipid tolerance test was performed on rats fasted for 14 h and orally loaded with lard containing either GSPE or not. GSPE (250 mg/kg body weight) markedly blocked the increase in plasma TAG induced by lard, with a statistically significant reduction of 22 % in the area under the curve. The VLDL-rich fraction was the major contributor (72 %) after 1 h, whereas the CM-rich fraction was the major contributor (85 %) after 3 h. At 5 and 7 h after treatment, CM-rich and VLDL-rich fractions showed a similar influence. Plasma post-heparin lipoprotein lipase (LPL) activity and LPL mRNA levels in white adipose tissue and muscle were not affected by GSPE. On the contrary, GSPE treatment significantly repressed (30 %) the secretion of VLDL-TAG. In the liver, GSPE treatment induced different effects on the expression of acyl-coenzyme A synthetase long-chain family member 1, Apoc3 and 3-hydroxy-3-methylglutaryl-coenzyme A reductase at 1 h and Cd36 at 5 h, compared to those induced by lard. Furthermore, GSPE treatment significantly increased the activity of carnitine palmitoyltransferase 1a at 1 h. In conclusion, both CM-rich and VLDL-rich fractions contributed to the hypotriacylglycerolaemic action of GSPE, but their influence depended on time. GSPE induces hypotriacylglycerolaemic actions by repressing lipoprotein secretion and not by increasing LPL activity.


Assuntos
Quilomícrons/sangue , Suplementos Nutricionais , Extrato de Sementes de Uva/uso terapêutico , Hipertrigliceridemia/prevenção & controle , Hipolipemiantes/uso terapêutico , Lipoproteínas VLDL/sangue , Proantocianidinas/uso terapêutico , Triglicerídeos/sangue , Ácido 3-Hidroxibutírico/sangue , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Quilomícrons/química , Ácidos Graxos não Esterificados/sangue , Regulação Enzimológica da Expressão Gênica , Hipertrigliceridemia/sangue , Hipertrigliceridemia/metabolismo , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Gordura Intra-Abdominal/enzimologia , Gordura Intra-Abdominal/metabolismo , Lipase Lipoproteica/sangue , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Lipoproteínas VLDL/química , Lipoproteínas VLDL/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Masculino , Especificidade de Órgãos , Período Pós-Prandial , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/efeitos adversos , Triglicerídeos/metabolismo
9.
Br J Nutr ; 107(2): 170-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21733324

RESUMO

The present study aims to determine the effects of grape seed proanthocyanidin extract (GSPE) on brown adipose tissue (BAT) mitochondrial function in a state of obesity induced by diet. Wistar male rats were fed with a cafeteria diet (Cd) for 4 months; during the last 21 d, two groups were treated with doses of 25 and 50 mg GSPE/kg body weight. In the BAT, enzymatic activities of citrate synthase, cytochrome c oxidase (COX) and ATPase were determined and gene expression was analysed by real-time PCR. The mitochondrial function of BAT was determined in fresh mitochondria by high-resolution respirometry using both pyruvate and carnitine-palmitoyl-CoA as substrates. The results show that the Cd causes an important decrease in the gene expression of sirtuin 1, nuclear respiratory factor 1, isocitrate dehydrogenase 3γ and COX5α and, what is more telling, decreases the levels of mitochondrial respiration both with pyruvate and canitine-palmitoyl-CoA. Most of these parameters, which are indicative of mitochondrial dysfunction due to diet-induced obesity, are improved by chronic supplementation of GSPE. The beneficial effects caused by the administration of GSPE are exhibited as a protection against weight gain, in spite of the Cd the rats were fed. These data indicate that chronic consumption of a moderate dose of GSPE can correct an energy imbalance in a situation of diet-induced obesity, thereby improving the mitochondrial function and thermogenic capacity of the BAT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fármacos Antiobesidade/uso terapêutico , Suplementos Nutricionais , Extrato de Sementes de Uva/uso terapêutico , Doenças Mitocondriais/dietoterapia , Obesidade/dietoterapia , Obesidade/metabolismo , Proantocianidinas/uso terapêutico , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/efeitos adversos , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Regulação Enzimológica da Expressão Gênica , Extrato de Sementes de Uva/administração & dosagem , Extrato de Sementes de Uva/efeitos adversos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Obesidade/fisiopatologia , Fosforilação Oxidativa , Proantocianidinas/administração & dosagem , Proantocianidinas/efeitos adversos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Termogênese
10.
Nat Commun ; 12(1): 6592, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782620

RESUMO

The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of Mycobacterium tuberculosis (Mtb) in macrophages. TNT is the C-terminal domain of the outer membrane protein CpnT and gains access to the cytosol to kill macrophages infected with Mtb. However, molecular mechanisms of TNT secretion and trafficking are largely unknown. A comprehensive analysis of the five type VII secretion systems of Mtb revealed that the ESX-4 system is required for export of CpnT and surface accessibility of TNT. Furthermore, the ESX-2 and ESX-4 systems are required for permeabilization of the phagosomal membrane in addition to the ESX-1 system. Thus, these three ESX systems need to act in concert to enable trafficking of TNT into the cytosol of Mtb-infected macrophages. These discoveries establish new molecular roles for the two previously uncharacterized type VII secretion systems ESX-2 and ESX-4 and reveal an intricate link between toxin secretion and phagosomal permeabilization by Mtb.


Assuntos
Toxinas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , Toxinas Biológicas/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias , Morte Celular , Macrófagos/metabolismo , Fagossomos/metabolismo , Sistemas de Secreção Tipo VII
11.
Front Microbiol ; 11: 489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296402

RESUMO

Vibrio vulnificus is a zoonotic pathogen that lives in temperate, tropical and subtropical aquatic ecosystems whose geographical distribution is expanding due to global warming. The species is genetically variable and only the strains that belong to the zoonotic clonal-complex can cause vibriosis in both humans and fish (being its main host the eel). Interestingly, the severity of the vibriosis in the eel and the human depends largely on the water temperature (highly virulent at 28°C, avirulent at 20°C or below) and on the iron content in the blood, respectively. The objective of this work was to unravel the role of temperature in the adaptation to the host through a transcriptomic and phenotypic approach. To this end, we obtained the transcriptome of a zoonotic strain grown in a minimum medium (CM9) at 20, 25, 28, and 37°C, and confirmed the transcriptomic results by RT-qPCR and phenotypic tests. In addition, we compared the temperature stimulon with those previously obtained for iron and serum (from eel and human, respectively). Our results suggest that warm temperatures activate adaptive traits that would prepare the bacteria for host colonization (metabolism, motility, chemotaxis, and the protease activity) and fish septicemia (iron-uptake from transferrin and production of O-antigen of high molecular weight) in a generalized manner, while environmental iron controls the expression of a host-adapted virulent phenotype (toxins and the production of a protective envelope). Finally, our results confirm that beyond the effect of temperature on the V. vulnificus distribution in the environment, it also has an effect on the infectious capability of this pathogen that must be taken into account to predict the real risk of V. vulnificus infection caused by global warming.

12.
Cell Rep ; 24(2): 429-440, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996103

RESUMO

Mycobacterium tuberculosis (Mtb) kills infected macrophages by inhibiting apoptosis and promoting necrosis. The tuberculosis necrotizing toxin (TNT) is a secreted nicotinamide adenine dinucleotide (NAD+) glycohydrolase that induces necrosis in infected macrophages. Here, we show that NAD+ depletion by TNT activates RIPK3 and MLKL, key mediators of necroptosis. Notably, Mtb bypasses the canonical necroptosis pathway since neither TNF-α nor RIPK1 are required for macrophage death. Macrophage necroptosis is associated with depolarized mitochondria and impaired ATP synthesis, known hallmarks of Mtb-induced cell death. These results identify TNT as the main trigger of necroptosis in Mtb-infected macrophages. Surprisingly, NAD+ depletion itself was sufficient to trigger necroptosis in a RIPK3- and MLKL-dependent manner by inhibiting the NAD+ salvage pathway in THP-1 cells or by TNT expression in Jurkat T cells. These findings suggest avenues for host-directed therapies to treat tuberculosis and other infectious and age-related diseases in which NAD+ deficiency is a pathological factor.


Assuntos
Apoptose , Macrófagos/patologia , Mycobacterium tuberculosis/metabolismo , NAD/deficiência , Animais , Apoptose/efeitos dos fármacos , Toxinas Bacterianas/toxicidade , Biocatálise/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Humanos , Células Jurkat , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Modelos Biológicos , Mycobacterium tuberculosis/efeitos dos fármacos , NAD/metabolismo , NAD+ Nucleosidase/metabolismo , Necrose , Niacinamida/farmacologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
13.
Microbiol Spectr ; 3(3)2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26185080

RESUMO

Vibrio vulnificus biotype 2 is the etiological agent of warm-water vibriosis, a disease that affects eels and other teleosts, especially in fish farms. Biotype 2 is polyphyletic and probably emerged from aquatic bacteria by acquisition of a transferable virulence plasmid that encodes resistance to innate immunity of eels and other teleosts. Interestingly, biotype 2 comprises a zoonotic clonal complex designated as serovar E that has extended worldwide. One of the most interesting virulence factors produced by serovar E is RtxA13, a multifunctional protein that acts as a lethal factor for fish, an invasion factor for mice, and a survival factor outside the host. Two practically identical copies of rtxA13 are present in all biotype 2 strains regardless of the serovar, one in the virulence plasmid and the other in chromosome II. The plasmid also contains other genes involved in survival and growth in eel blood: vep07, a gene for an outer membrane (OM) lipoprotein involved in resistance to eel serum and vep20, a gene for an OM receptor specific for eel-transferrin and, probably, other related fish transferrins. All the three genes are highly conserved within biotype 2, which suggests that they are under a strong selective pressure. Interestingly, the three genes are related with transferable plasmids, which emphasizes the role of horizontal gene transfer in the evolution of V. vulnificus in nutrient-enriched aquatic environments, such as fish farms.


Assuntos
Toxinas Bacterianas/metabolismo , Enguias/microbiologia , Doenças dos Peixes/microbiologia , Vibrioses/microbiologia , Vibrio vulnificus/patogenicidade , Fatores de Virulência/metabolismo , Microbiologia da Água , Animais , Toxinas Bacterianas/genética , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/transmissão , Transferência Genética Horizontal , Humanos , Imunidade Inata , Camundongos , Filogenia , Plasmídeos/genética , Receptores da Transferrina/metabolismo , Vibrioses/epidemiologia , Vibrioses/transmissão , Vibrio vulnificus/classificação , Vibrio vulnificus/genética , Fatores de Virulência/genética
14.
Mol Nutr Food Res ; 58(4): 727-37, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24338985

RESUMO

SCOPE: Increased oxidative stress may play an important role in metabolic syndrome and related manifestations, including obesity, atherosclerosis, hypertension, and insulin resistance. Its relation to obesity is due to increased reactive oxygen species and/or decreased glutathione (GSH) antioxidant metabolism. Consequently, the activation of glutathione metabolism appears to be a central defense response to prevent oxidative stress. In this sense, dietary supplements with natural antioxidant molecules, including proanthocyanidins, may present a useful strategy of controlling and reducing complications of obesity, including hepatic steatosis. MATERIALS AND RESULTS: We assessed the grape seed proanthocyanidin extract (GSPE) effect on oxidative alterations related to genetically obese rats (Zucker rats) and, more specifically, to hepatic GSH metabolism. We demonstrate that the administration of GSPE reduced the oxidized glutathione accumulation increasing the total GSH/oxidized glutathione hepatic ratio and consequently decreasing the activation of antioxidant enzymes, including glutathione peroxidase, glutathione reductase, and glutathione S-transferase, and increasing the total antioxidant capacity of the cell. CONCLUSION: In Zucker rats, the obesity-induced oxidative stress related to liver glutathione alteration was mitigated by GSPE administration.


Assuntos
Glutationa/metabolismo , Extrato de Sementes de Uva/farmacologia , Fígado/efeitos dos fármacos , Obesidade/tratamento farmacológico , Proantocianidinas/farmacologia , Animais , Suplementos Nutricionais , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Triglicerídeos/metabolismo
15.
Food Chem ; 165: 14-20, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25038643

RESUMO

The ingestion of dietary lipids leads to oxidative stress. This postprandial oxidative stress may potentiate the adverse effects of postprandial hyperlipidaemia. Proanthocyanidins have been shown to alleviate oxidative stress and hypertriglyceridaemia associated with the postprandial state. Additionally, omega-3 polyunsaturated fatty acids (PUFAs) also have beneficial effects on lipoprotein metabolism and oxidative stress. The present study was designed to investigate the possible additive effects in liver of an acute dose of grape seed proanthocyanidins extract (GSPE) and oil rich in docosahexaenoic acid (DHA-OR) on lipidic postprandial oxidative stress in Wistar rats. GSPE+DHA-OR modifies the hepatic antioxidant enzymatic activities (GST and GPx), clearly showing that this combination increases the detoxification of postprandial xenobiotics via the GST action mediated hepatic GSH conjugation. In conclusion, this study provides evidence that the combination of GSPE and DHA-OR ameliorate the transient imbalance between the lipid hydroperoxide level and antioxidant status related to a lipidic postprandial state.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Extrato de Sementes de Uva/química , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proantocianidinas/química , Animais , Antioxidantes/farmacologia , Masculino , Período Pós-Prandial , Ratos , Ratos Wistar
16.
Food Chem Toxicol ; 62: 750-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24140970

RESUMO

The excessive production of reactive oxygen species has been implicated in several pathologies, such as atherosclerosis, obesity, hypertension and insulin resistance. Docosahexaenoic acid (DHA) may protect against the above mentioned diseases, but paradoxically the main DHA treated pathologies are also associated with increased ROS levels. Therefore, the aim of this study was to explore if in vitro DHA supplementation may increase the sensitivity of cells to tert-BHP induced oxidative stress, and if the green tea polyphenol epigallocatechin-3-gallate (EGCG) is able to correct such detrimental effect. We found that DHA-enriched cells exacerbate ROS generation, decrease cell viability and increase Nrf2 nuclear translocation and HO-1 expression. Interestingly, cellular EGCG is able to counteract oxidative damage from either tert-BHP or DHA-enriched cells. In consequence, our results suggest that in a ROS enriched environment DHA could not always be beneficial for cells and can be considered a double-edged sword in terms of its benefits vs. risks. In this sense, our results propose that the supplementation with potent antioxidant molecules could be an appropriate strategy to reduce the risks related with the DHA supplementation in an oxidative stress-associated condition.


Assuntos
Catequina/análogos & derivados , Ácidos Docosa-Hexaenoicos/farmacologia , terc-Butil Hidroperóxido/toxicidade , Animais , Catalase/metabolismo , Catequina/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/toxicidade , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Chá/química
17.
J Agric Food Chem ; 59(15): 8491-8, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21726097

RESUMO

The aim of this study was to determine the effect of chronic dietary supplementation of a grape seed proanthocyanidin extract (GSPE) at a dose of 35 mg/kg body weight on energy metabolism and mitochondrial function in the skeletal muscle of Zucker obese rats. Three groups of 10 animals each were used: lean Fa/fa lean group (LG) rats, a control fa/fa obese group (OG) of rats, and an obese supplemented fa/fa proanthocyanidins obese group (POG) of rats, which were supplemented with a dose of 35 mg GSPE/kg of body weight/day during the 68 days of experimentation. Skeletal muscle energy metabolism was evaluated by determining enzyme activities, key metabolic gene expression, and immunoblotting of oxidative phosphorylation complexes. Mitochondrial function was analyzed by high-resolution respirometry using both a glycosidic and a lipid substrate. In muscle, chronic GSPE administration decreased citrate synthase activity, the amount of oxidative phosphorylation complexes I and II, and Nrf1 gene expression, without any effects on the mitochondrial oxidative capacity. This situation was associated with lower reactive oxygen species (ROS) generation. Additionally, GSPE administration enhanced the ability to oxidize pyruvate, and it also increased the activity of enzymes involved in oxidative phosphorylation including cytochrome c oxidase. There is strong evidence to suggest that GSPE administration stimulates mitochondrial function in skeletal muscle specifically by increasing the capacity to oxidize pyruvate and contributes to reduced muscle ROS generation in obese Zucker rats.


Assuntos
Suplementos Nutricionais/análise , Extrato de Sementes de Uva/administração & dosagem , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Proantocianidinas/administração & dosagem , Animais , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo , Oxirredução , Fosforilação Oxidativa , Ratos , Ratos Transgênicos , Ratos Zucker
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA