Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Lepr Rev ; 89(2): 102-116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-37180343

RESUMO

Innovative approaches are required to further enhance leprosy control, reduce the number of people developing leprosy, and curb transmission. Early case detection, contact screening, and chemoprophylaxis currently is the most promising approach to achieve this goal. The Leprosy Post-Exposure Prophylaxis (LPEP) programme generates evidence on the feasibility of integrating contact tracing and single-dose rifampicin (SDR) administration into routine leprosy control activities in different settings. The LPEP programme is implemented within the leprosy control programmes of Brazil, Cambodia, India, Indonesia, Myanmar, Nepal, Sri Lanka and Tanzania. Focus is on three key interventions: tracing the contacts of newly diagnosed leprosy patients; screening the contacts for leprosy; and administering SDR to eligible contacts. Country-specific protocol adaptations refer to contact definition, minimal age for SDR, and staff involved. Central coordination, detailed documentation and rigorous supervision ensure quality evidence. Around 2 years of field work had been completed in seven countries by July 2017. The 5,941 enrolled index patients (89·4% of the registered) identified a total of 123,311 contacts, of which 99·1% were traced and screened. Among them, 406 new leprosy patients were identified (329/100,000), and 10,883 (8·9%) were excluded from SDR for various reasons. Also, 785 contacts (0·7%) refused the prophylactic treatment with SDR. Overall, SDR was administered to 89·0% of the listed contacts. Post-exposure prophylaxis with SDR is safe; can be integrated into the routines of different leprosy control programmes; and is generally well accepted by index patients, their contacts and the health workforce. The programme has also invigorated local leprosy control.

2.
Health Econ Rev ; 14(1): 44, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904689

RESUMO

BACKGROUND: Indonesia has the world's second-highest tuberculosis (TB) burden, with 969,000 annual TB infections. In 2017, Indonesia faced significant challenges in TB care, with 18% of cases missed, 29% of diagnosed cases unreported, and 55.4% of positive results not notified. The government is exploring a new approach called "strategic purchasing" to improve TB detection and treatment rates and offer cost-effective service delivery. OBJECTIVES: We aimed to analyze the financial impact of implementing a TB purchasing pilot in the city of Medan and assess the project's affordability and value for money. METHODS: We developed a budget impact model to estimate the cost-effectiveness of using strategic purchasing to improve TB reporting and treatment success rates. We used using data from Medan's budget impact model and the Ministry of Health's guidelines to predict the total cost and the cost per patient. RESULTS: The model showed that strategic purchasing would improve TB reporting by 63% and successful treatments by 64%. While this would lead to a rise in total spending on TB care by 60%, the cost per patient would decrease by 3%. This is because more care would be provided in primary healthcare settings, which are more cost-effective than hospitals. CONCLUSIONS: While strategic purchasing may increase overall spending, it could improve TB care in Indonesia by identifying more cases, treating them more effectively, and reducing the cost per patient. This could potentially lead to long-term cost savings and improved health outcomes.

3.
PLoS Negl Trop Dis ; 15(3): e0009279, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33788863

RESUMO

BACKGROUND: The Leprosy Post-Exposure Prophylaxis (LPEP) program explored the feasibility and impact of contact tracing and the provision of single dose rifampicin (SDR) to eligible contacts of newly diagnosed leprosy patients in Brazil, India, Indonesia, Myanmar, Nepal, Sri Lanka and Tanzania. As the impact of the programme is difficult to establish in the short term, we apply mathematical modelling to predict its long-term impact on the leprosy incidence. METHODOLOGY: The individual-based model SIMCOLEP was calibrated and validated to the historic leprosy incidence data in the study areas. For each area, we assessed two scenarios: 1) continuation of existing routine activities as in 2014; and 2) routine activities combined with LPEP starting in 2015. The number of contacts per index patient screened varied from 1 to 36 between areas. Projections were made until 2040. PRINCIPAL FINDINGS: In all areas, the LPEP program increased the number of detected cases in the first year(s) of the programme as compared to the routine programme, followed by a faster reduction afterwards with increasing benefit over time. LPEP could accelerate the reduction of the leprosy incidence by up to six years as compared to the routine programme. The impact of LPEP varied by area due to differences in the number of contacts per index patient included and differences in leprosy epidemiology and routine control programme. CONCLUSIONS: The LPEP program contributes significantly to the reduction of the leprosy incidence and could potentially accelerate the interruption of transmission. It would be advisable to include contact tracing/screening and SDR in routine leprosy programmes.


Assuntos
Busca de Comunicante/métodos , Hanseníase/epidemiologia , Hanseníase/prevenção & controle , Programas de Rastreamento/métodos , Prevenção Primária/métodos , Brasil , Humanos , Índia , Indonésia/epidemiologia , Hansenostáticos/uso terapêutico , Mianmar/epidemiologia , Nepal/epidemiologia , Profilaxia Pós-Exposição/métodos , Rifampina/uso terapêutico , Sri Lanka/epidemiologia , Tanzânia/epidemiologia
4.
Lancet Glob Health ; 9(1): e81-e90, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129378

RESUMO

BACKGROUND: Innovative approaches are required for leprosy control to reduce cases and curb transmission of Mycobacterium leprae. Early case detection, contact screening, and chemoprophylaxis are the most promising tools. We aimed to generate evidence on the feasibility of integrating contact tracing and administration of single-dose rifampicin (SDR) into routine leprosy control activities. METHODS: The leprosy post-exposure prophylaxis (LPEP) programme was an international, multicentre feasibility study implemented within the leprosy control programmes of Brazil, India, Indonesia, Myanmar, Nepal, Sri Lanka, and Tanzania. LPEP explored the feasibility of combining three key interventions: systematically tracing contacts of individuals newly diagnosed with leprosy; screening the traced contacts for leprosy; and administering SDR to eligible contacts. Outcomes were assessed in terms of number of contacts traced, screened, and SDR administration rates. FINDINGS: Between Jan 1, 2015, and Aug 1, 2019, LPEP enrolled 9170 index patients and listed 179 769 contacts, of whom 174 782 (97·2%) were successfully traced and screened. Of those screened, 22 854 (13·1%) were excluded from SDR mainly because of health reasons and age. Among those excluded, 810 were confirmed as new patients (46 per 10 000 contacts screened). Among the eligible screened contacts, 1182 (0·7%) refused prophylactic treatment with SDR. Overall, SDR was administered to 151 928 (86·9%) screened contacts. No serious adverse events were reported. INTERPRETATION: Post-exposure prophylaxis with SDR is safe; can be integrated into different leprosy control programmes with minimal additional efforts once contact tracing has been established; and is generally well accepted by index patients, their contacts, and health-care workers. The programme has also invigorated local leprosy control through the availability of a prophylactic intervention; therefore, we recommend rolling out SDR in all settings where contact tracing and screening have been established. FUNDING: Novartis Foundation.


Assuntos
Hansenostáticos/uso terapêutico , Hanseníase/prevenção & controle , Profilaxia Pós-Exposição/métodos , Saúde Pública/métodos , Rifampina/uso terapêutico , Estudos de Viabilidade , Humanos , Medicina de Precisão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA