Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biomacromolecules ; 20(12): 4312-4331, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31696698

RESUMO

Natural melanin is a ubiquitous material that plays critical biofunctional roles in different living organisms. Scientists have dedicated significant efforts to elucidate the biofunctional roles of melanin since its discovery. It has been confirmed that natural melanin possesses a number of intriguing properties such as broadband light absorption, free-radical scavenging ability, redox activity, metal ion chelating, and electronic-ionic conductivity, enabling it to be a versatile functional material in various applications. Natural eumelanin has been the most investigated type of melanin in the past few decades and is discussed in this Review. Here we have comprehensively discussed the latest advances and associated mechanisms in emerging applications of natural eumelanin in different fields such as functional polymers, energy storage, energy conversion, photocatalysis, photothermal therapy, and wastewater treatment considering its bioinspired properties. Important applications developed based on polydopamine, which is a "eumelanin-like" material, will also be presented to give guidelines to further develop natural-melanin-based applications. Authors' perspectives on the challenges and potentials of developing natural-eumelanin-based applications will also be included. This Review provides a clear picture of the natural-eumelanin-based applications and, in turn, accelerates the expansion of the relevant emerging fields.


Assuntos
Melaninas/química , Humanos
2.
ACS Appl Mater Interfaces ; 16(19): 25221-25235, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688012

RESUMO

This study aims at understanding the effect of the photoreduction process during the synthesis of gold (Au)-doped TiO2 colloids on the conferred functionalities on cotton fabrics. TiO2/Au and TiO2/Au/SiO2 colloids were synthesized through the sol-gel method with and without undergoing the photoreduction step based on different molar ratios of Au:Ti (0.001 and 0.01) and TiO2/SiO2 (1:1 and 1:2.3). The colloids were applied to cotton fabrics, and the obtained photocatalytic self-cleaning, wet photocatalytic activity, UV protection, and antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria were investigated. The obtained results demonstrated that the photoreduction of Au weakened the self-cleaning effect and reduced the photocatalytic activity of coated fabrics. Also, an excess amount of Au deteriorated the photocatalytic activity under both UV and visible light. The most efficient self-cleaning effect was obtained on fabrics coated with a ternary TiO2/Au/SiO2 colloid containing ionic Au, where it decomposed coffee and red-wine stains after 3 h of illumination. Adding silica (SiO2) made the fabrics superhydrophilic and led to greater methylene blue (MB) dye adsorption, a faster dye degradation pace, and more efficient stain removal. Moreover, the photoreduction process affected the size of Au nanoparticles (NPs), weakened the antibacterial activity of fabrics against both types of tested bacteria, and modestly increased the UV protection. In general, the photoactivity of Au-doped colloids was influenced by the synthesis method, the ionic and metallic states of the Au dopant, the concentration of the Au dopant, and the presence and concentration of silica.


Assuntos
Antibacterianos , Coloides , Fibra de Algodão , Escherichia coli , Ouro , Staphylococcus aureus , Titânio , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Ouro/química , Ouro/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Coloides/química , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Catálise , Raios Ultravioleta , Oxirredução
3.
ACS Appl Mater Interfaces ; 15(28): 34031-34043, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37399520

RESUMO

Cotton fabrics with superhydrophobic, antibacterial, UV protection, and photothermal properties were developed using Ag/PDMS coatings, and the role of coating formulations on the obtained functionalities was studied. Specific attention was paid to understanding the relationships between the fabrics' superhydrophobicity and antibacterial activity against Escherichia coli (E. coli) bacteria. UV protection performance of Ag/PDMS coatings was thoroughly evaluated based on the variation of UV transmission rate through coated fabrics and photoinduced chemiluminescence spectra. Moreover, the effect of silver nanoparticles (Ag NPs) and PDMS on developing a photothermal effect on fabrics was discussed. It was found that the content of Ag NPs and PDMS played critical roles in determining the water contact angle (WCA) on modified fabrics. The largest WCA was 171.31°, which was durable even after numerous accelerated wash cycles and abrasions. Antibacterial activity of fabrics showed the positive effect of pure PDMS in bacterial growth inhibition. Moreover, it was found that the antibacterial performance was greatly affected by the content of Ag NPs loaded on fabrics rather than their superhydrophobic status. Moreover, increasing the content of Ag NPs boosted the UV protection level of fabrics, improved fabrics photostability, and reduced the UV transmission rate through fabrics. Testing the photothermal effect confirmed that the content of Ag NPs and PDMS both played prominent roles, where Ag acted as a photothermal agent and PDMS determined the NIR reflection rate from the coated surface. The modified fabrics were characterized using TGA, SEM, FTIR, and XRD techniques, and it was confirmed that using a higher amount of PDMS increased the amount of Ag NPs deposition on fabrics.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Escherichia coli , Prata/farmacologia , Prata/química , Antibacterianos/farmacologia , Antibacterianos/química , Interações Hidrofóbicas e Hidrofílicas
4.
Adv Colloid Interface Sci ; 277: 102116, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32036000

RESUMO

The use of nanomaterials in textiles provides many new opportunities and advantages for users and manufacturers; however, it comes with some of its downsides and challenges which need to be understood and overcome for enhancing the applicability of these products. This review article discusses the recent progress in developing self-cleaning and conductive textiles as two of the leading research fields of smart textiles. In particular, different aspects of fabricating nanocoatings for photocatalytic self-cleaning, superhydrophobic and electromagnetic interference (EMI) shielding effect will be brought to light. The theoretical concepts, mechanisms, latest fabrication methods along with their potential applications will be discussed. Moreover, the current drawbacks of these fields will be underlined and some recommendations for future research trajectories in terms of performance, current limitations, sustainability and safety will be proposed. This review article provides a comprehensive review on the state-of-the-art achievements in the field, which will be a valuable reference for researchers and decision makers.

5.
ACS Biomater Sci Eng ; 6(9): 5305-5314, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455279

RESUMO

Natural melanin is recognized as a biocompatible photothermal agent because of its biologically derived nature and efficient photothermal conversion ability. Here, yak hair melanin (YM) is added to polyurethane (PU) for the fabrication of NIR-photoresponsive shape memory implants. The in vitro toxicity of the YM/PU composites is carried out by exposing them to human mesenchymal stem cells (hMSCs) and mouse fibroblast (L929) cells lines for 24 h, while the in vivo toxicity is investigated by implanting the YM/PU composites in the mouse for two months. No significant differences on cell viability, blood chemistry, hematology, and histological results are observed between YM/PU composites and control groups, suggesting their excellent biocompatibility. The biostability of the YM/PU composites is confirmed by monitoring their in vitro degradation for 12 weeks. The YM/PU column implanted in the back subcutis or vagina of the mouse rapidly recovered to its original state within 60 s under a very low NIR laser (808 nm, 0.5 W/cm2) intensity, which is much lower than the general laser intensity for photothermal cancer therapy (1-2 W/cm2). This work confirms the applicability of the YM/PU composites as long-term implant materials and expedites the use of YM/PU composites as cost-effective candidates for biomedical applications.


Assuntos
Melaninas , Poliuretanos , Animais , Sobrevivência Celular , Camundongos , Próteses e Implantes
6.
ACS Appl Mater Interfaces ; 11(14): 13039-13057, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30892859

RESUMO

The concept of thermoregulating textiles capable of providing personal thermal management property (PTM) has attracted significant attention in recent years. It is considered as an emerging approach to promote the comfort and general well-being of wearers and also to mitigate the energy consumption load for indoor living space conditioning. Regulating the heat exchange between human body and environment has been the core subject of many studies on introducing the PTM functionality to textiles. This work provides an overview of the latest literature, summarizing the recent innovations and state-of-the-art approaches of controlling the heat gain and loss of textiles. To this end, methods to control the fundamental aspects of heat gain and loss of fabrics such as using near-infrared reflective materials and conductive nanomaterials, designing photonic structures of fabrics, and engineering nanoporous structures for passive cooling and heating effects will be discussed. Moreover, specific attention is given to the application of phase change materials in textiles, their integration methods, and the associated mechanisms. Several commercial methods such as adapting the innovative designs, introducing moisture management capability, and using air/liquid thermoregulating systems will also be discussed. This review article provides a clear picture of the concept of thermoregulating textiles and recommends some future research trajectories for this emerging field.

7.
J Colloid Interface Sci ; 440: 299-309, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25460718

RESUMO

The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images.

8.
J Colloid Interface Sci ; 447: 191-201, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25746934

RESUMO

The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images.

9.
J Colloid Interface Sci ; 401: 1-7, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23602671

RESUMO

This manuscript aims to investigate the functionalization of cotton fabrics with TiO2/SiO2. In this study, the sol-gel method was employed to prepare titania and silica sols and the functionalization was carried out using the dip-pad-dry-cure process. Titanium tetra isopropoxide (TTIP) and tetra ethyl orthosilicate (TEOS) were utilized as precursors of TiO2 and SiO2, respectively. TiO2/SiO2 composite sols were prepared in three different Ti:Si molar ratios of 1:0.43, 1:1, and 1:2.33. The self-cleaning property of cotton samples functionalized with TiO2/SiO2 was assessed based on the coffee stain removal capability and the decomposition rate of methylene blue under UV irradiation. FTIR study of the TiO2/SiO2 photocatalyst confirmed the existence of Si-O-Si and Ti-O-Si bonds. Scanning electron microscopy was employed to investigate the morphology of the functionalized cotton samples. The samples coated with TiO2/SiO2 showed greater ability of coffee stain removal and methylene blue degradation compared with samples functionalized with TiO2 demonstrating improved self-cleaning properties. The role of SiO2 in improving these properties is also discussed.


Assuntos
Fibra de Algodão , Dióxido de Silício/química , Titânio/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
J Photochem Photobiol B ; 103(3): 207-14, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21474327

RESUMO

In this study an effective nanocomposite antimicrobial agent for wool fabric was introduced. The silver loaded nano TiO(2) as a nanocomposite was prepared through UV irradiation in an ultrasonic bath. The nanocomposite was stabilized on the wool fabric surface by using citric acid as a friendly cross-linking agent. The treated wool fabrics indicated an antimicrobial activity against both Staphylococcus aureus and Escherichia coli bacteria. Increasing the concentration of Ag/TiO(2) nanocomposite led to an improvement in antibacterial activities of the treated fabrics. Also increasing the amount of citric acid improved the adsorption of Ag/TiO(2) on the wool fabric surface leading to enhance antibacterial activity. The EDS spectrum, SEM images, and XRD patterns was studied to confirm the presence of existence of nanocomposite on the fabric surface. The role of both cross-linking agent and nanocomposite concentrations on the results was investigated using response surface methodology (RSM).


Assuntos
Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Titânio/farmacologia , Raios Ultravioleta , Lã/microbiologia , Animais , Anti-Infecciosos/química , Ácido Cítrico/química , Ácido Cítrico/farmacologia , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Escherichia coli/efeitos da radiação , Microscopia Eletrônica de Varredura , Nanocompostos/química , Prata/química , Staphylococcus aureus/efeitos da radiação , Titânio/química , Lã/efeitos dos fármacos , Lã/efeitos da radiação , Difração de Raios X
11.
Photochem Photobiol ; 86(2): 255-60, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20059726

RESUMO

Wool is the most important animal fiber used in textile industries, but its photostability is very low. Scientists have searched for new ways to increase the photostability of wool. As TiO(2) nano particles have features suitable for new applications, the UV-blocking power of nano TiO(2) may be used for protecting fabrics against UV rays. Treatment of wool with TiO(2) can be effective for controlling photodegradation. This study focused on protecting wool fabric against UV rays using nano TiO(2). To this end, oxidized and raw wool were treated with citric acid as the cross-linking agent and different concentrations of nano TiO(2). The whiteness and yellowness of wool fabric samples were reported. XRD patterns proved the existence of TiO(2) nano-particles on the wool surface. Finally, the results revealed that nano TiO(2) is a suitable UV absorber on wool fabric and its effect depends on concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA