Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biotechnol Bioeng ; 118(8): 2870-2885, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33930190

RESUMO

Host cell proteins (HCPs) are process-related impurities that may copurify with biopharmaceutical drug products. Within this class of impurities there are some that are more problematic. These problematic HCPs can be considered high-risk and can include those that are immunogenic, biologically active, or enzymatically active with the potential to degrade either product molecules or excipients used in formulation. Some have been shown to be difficult to remove by purification. Why should the biopharmaceutical industry worry about these high-risk HCPs? What approach could be taken to understand the origin of its copurification and address these high-risk HCPs? To answer these questions, the BioPhorum Development Group HCP Workstream initiated a collaboration among its 26-company team with the goal of industry alignment around high-risk HCPs. The information gathered through literature searches, company experiences, and surveys were used to compile a list of frequently seen problematic/high-risk HCPs. These high-risk HCPs were further classified based on their potential impact into different risk categories. A step-by-step recommendation is provided for establishing a comprehensive control strategy based on risk assessments for monitoring and/or eliminating the known impurity from the process that would be beneficial to the biopharmaceutical industry.


Assuntos
Produtos Biológicos/química , Indústria Farmacêutica , Produtos Biológicos/uso terapêutico , Medição de Risco
2.
J Pharm Biomed Anal ; 242: 116009, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354541

RESUMO

Many methods using liquid chromatography-mass spectrometry (LC-MS) have been established for identifying residual host cell proteins (HCPs) to aid in the process development and quality control of therapeutic proteins. However, the use of MS-based techniques for adeno-associated virus (AAV) is still in its infancy, with few methods reported and minimal information available on potentially problematic HCPs. In this study, we developed a highly sensitive and effective differential digestion method to profile residual HCPs in AAV. Unlike direct digestion, which completely digests both AAV and HCPs, our differential digestion method takes advantage of AAV's unique characteristics to maintain the integrity of AAV while preferentially digesting HCPs under denaturing and reducing conditions. This differential digestion method requires only several micrograms of sample and significantly enhances the identification of HCPs. Furthermore, this method can be applied to all five different AAV serotypes for comprehensive HCP profiling. Our work fills a gap in AAV HCP analysis by providing a sensitive and robust strategy for detecting, monitoring, and measuring HCPs.


Assuntos
Dependovirus , Espectrometria de Massa com Cromatografia Líquida , Animais , Cricetinae , Cromatografia Líquida/métodos , Dependovirus/genética , Espectrometria de Massas em Tandem , Proteínas/análise , Digestão , Cricetulus , Células CHO
3.
J Chromatogr A ; 1722: 464885, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38631223

RESUMO

Heightened interest in messenger RNA (mRNA) therapeutics has accelerated the need for analytical methodologies that facilitate the production of supplies for clinical trials. Forced degradation studies are routinely conducted to provide an understanding of potential weak spots in the molecule that are exploited by stresses encountered during bulk purification, production, shipment, and storage. Consequently, temperature fluctuations and excursions are often experienced during these unit operations and may accelerate mRNA degradation. Here, we present a concise panel of chromatography-based stability-indicating assays for evaluating thermally stressed in vitro transcribed (IVT) mRNA as part of a forced degradation study. We found that addition of EDTA to the mRNAs prior to heat exposure reduced the extent of degradation, suggesting that transcripts may be fragmenting via a divalent metal-ion mediated pathway. Trace divalent metal contamination that can accelerate RNA instability is likely carried over from upstream steps. We demonstrate the application of these methods to evaluate the critical quality attributes (CQAs) of mRNAs as well as to detect intrinsic process- and product-related impurities.


Assuntos
Estabilidade de RNA , RNA Mensageiro , Ácido Edético/química , Transcrição Gênica , Temperatura Alta
4.
J Pharm Biomed Anal ; 249: 116352, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029354

RESUMO

Messenger RNA (mRNA) is rapidly growing as a therapeutic modality for vaccination and the treatment of a wide range of diseases. As a result, there is an increased demand for mRNA-based analytical methods capable of assessing purity and stability, which are considered critical quality attributes (CQAs). In recent decades capillary electrophoresis (CE) has emerged alongside liquid chromatography (LC) as an important tool for the assessment of purity and stability of mRNA therapeutics. CE offers a variety of advantages over conventional LC or gel-based analytical methods, including reduced injection volume, increased resolution, and increased separation efficiency. In this study we compared CE-based analytical methods: the Agilent RNA 6000 Nano Kit, the Revvity RNA Reagent Kit, the Sciex RNA 9000 Purity and Integrity Kit, and the Agilent HS RNA Kit. These methods were evaluated on their vendor-recommended instruments: the Bioanalyzer, LabChip GXII, PA800 Plus, and Fragment Analyzer, respectively. We assessed the ability of these methods to measure mRNA integrity, purity, and stability. Furthermore, several parameters for each method were also assessed: selectivity, precision, resolution, analysis time, and ease of use. Based on our results, all four methods are suitable for use in the characterization of in vitro transcribed (IVT) mRNA, depending on the intended application. The Sciex RNA 9000 Purity and Integrity kit method achieved the highest selectivity and resolving power compared with the other methods, making it the most suitable for high-resolution, in-depth sample characterization. In comparison, the Agilent RNA 6000 Nano Kit, Revvity RNA Reagent Kit, and Agilent HS RNA Kit achieved lower selectivity and resolution, but their faster analysis times make them more suitable for high-throughput and screening applications.

5.
J Pharm Biomed Anal ; 234: 115562, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37441888

RESUMO

After more than two decades of research and development, adeno-associated virus (AAV) has become one of the dominant delivery vectors in gene therapy. Despite the focused research, the cell entry pathway for AAV is still not fully understood. Universal AAV receptor (AAVR) has been identified to be involved in cellular entry of different AAV serotypes. With the unveiling of the high-resolution AAV-AAVR complex structure by cryogenic electron microscopy, the atomic level interaction between AAV and AAVR has become the focus of study in recent years. However, the serotype dependence of this binding interaction and the effect of pH have not been studied. Here, orthogonal approaches including bio-layer interferometry (BLI), size-exclusion chromatography coupled to multi-angle laser scattering (SEC-MALS) and sedimentation velocity analytical ultracentrifugation (SV-AUC) were utilized to study the interaction between selected AAV serotypes and AAVR under different pH conditions. A robust BLI method was developed and the equilibrium dissociation binding constants (KD) between different AAV serotypes (AAV1, AAV5 and AAV8) and AAVR was measured. The binding constants measured by BLI together with orthogonal methods (SEC-MALS and SV-AUC) all confirmed that AAV5 has the strongest binding affinity followed by AAV1 while AAV8 binds the weakest. It was also observed that lower pH promotes the binding between AAV and AAVR and neutral or slightly basic conditions lead to very weak binding. These data indicate that for certain serotypes, AAVR may play a prominent role in trafficking AAV to the Golgi rather than acting as a host cell receptor. Information obtained from these combinatorial biophysical methods can be used to engineer future generations of AAVs to have better transduction efficiency.


Assuntos
Dependovirus , Dependovirus/genética , Dependovirus/química , Concentração de Íons de Hidrogênio , Ligação Proteica , Sorogrupo
6.
J Pharm Biomed Anal ; 236: 115692, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37696189

RESUMO

The 3' poly(A) tail is an important component of messenger RNA (mRNA). The length of the poly(A) tail has direct impact on the stability and translation efficiency of the mRNA molecule and is therefore considered to be a critical quality attribute (CQA) of mRNA-based therapeutics and vaccines. Various analytical methods have been developed to monitor this CQA. Methods like ion-pair reversed-phase liquid chromatography (IPRP-LC) can be used to quantify the percentage of mRNA with poly(A) tail but fail to provide further information on the actual length of poly(A). High-resolution methods such as liquid chromatography coupled with mass spectrometry (LC-MS) or next generation sequencing (NGS) can separate poly(A) tail length by one nucleotide (n/n + 1 resolution) but are complicated to implement for release testing of manufactured mRNA. In this study, a workflow utilizing capillary gel electrophoresis (CGE) for characterizing the poly(A) tail length of mRNA was developed. The CGE method demonstrated resolution comparable with the LC-MS method. With UV detection and the addition of poly(A) length markers, this method can provide poly(A) tail length information and can also provide quantitation of each poly(A) length, making it a suitable release method to monitor the CQA of poly(A) tail length.


Assuntos
Nucleotídeos , Vacinas , RNA Mensageiro/genética , Fluxo de Trabalho , Eletroforese Capilar/métodos
7.
Bioanalysis ; 13(5): 295-361, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33511867

RESUMO

The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by LCMS were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication covers the recommendations on (Part 2A) BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation and (Part 2B) Regulatory Input. Part 1 (Innovation in Small Molecules, Hybrid LBA/LCMS & Regulated Bioanalysis), Part 3 (Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity) are published in volume 13 of Bioanalysis, issues 4, and 6 (2021), respectively.


Assuntos
Bioensaio , Biotecnologia , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Relatório de Pesquisa , Biomarcadores/análise , Humanos
8.
Bioanalysis ; 11(17): 1569-1580, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31208197

RESUMO

Background: Soluble drug target in clinical study samples generated false positive results in anti-drug antibody (ADA) bridging assays due to target-mediated bridging. Results: The combination of two target-blocking reagents and mild basic assay pH resulted in high tolerance to recombinant target protein and reduced levels of positivity in clinical study samples with pharmacokinetic profiles that did not indicate significant ADA response. Testing with low-affinity ADA positive serum from immunized rabbits and known ADA positive samples from nonclinical studies in rats confirmed the assay's ability to detect ADA positive samples and the minimal impact of basic pH and target-blocking reagents on ADA detection. Conclusion: These strategies provide alternatives for mitigating target interference when standard target-blocking antibodies alone are ineffective.


Assuntos
Anticorpos/sangue , Anticorpos/imunologia , Técnicas Imunológicas , Animais , Reações Falso-Positivas , Concentração de Íons de Hidrogênio , Preparações Farmacêuticas , Coelhos , Ratos
9.
Bioanalysis ; 11(24): 2207-2244, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31820675

RESUMO

The 2019 13th Workshop on Recent Issues in Bioanalysis (WRIB) took place in New Orleans, LA, USA on April 1-5, 2019 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers, immunogenicity and gene therapy. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS, LBA cell-based/flow cytometry assays and qPCR approaches. This 2019 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2019 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers New Insights in Biomarker Assay Validation, Current & Effective Strategies for Critical Reagent Management, Flow Cytometry Validation in Drug Discovery & Development & CLSI H62, Interpretation of the 2019 FDA Immunogenicity Guidance and Gene Therapy Bioanalytical Challenges. Part 1 (Innovation in Small Molecules and Oligonucleotides & Mass Spectrometry Method Development Strategies for Large Molecule Bioanalysis) and Part 2 (Recommendations on the 2018 FDA BMV Guidance, 2019 ICH M10 BMV Draft Guideline and regulatory agencies' input on bioanalysis, biomarkers, immunogenicity and gene therapy) are published in volume 11 of Bioanalysis, issues 22 and 23 (2019), respectively.


Assuntos
Bioensaio/métodos , Biomarcadores/metabolismo , Citometria de Fluxo/métodos , Terapia Genética/métodos , United States Food and Drug Administration/normas , História do Século XXI , Humanos , Estados Unidos
10.
Bioanalysis ; 10(24): 1973-2001, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30488726

RESUMO

The 2018 12th Workshop on Recent Issues in Bioanalysis took place in Philadelphia, PA, USA on April 9-13, 2018 with an attendance of over 900 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day full immersion in bioanalysis, biomarkers and immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS and LBA/cell-based assays approaches. This 2018 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2018 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations for large molecule bioanalysis, biomarkers and immunogenicity using LBA and cell-based assays. Part 1 (LCMS for small molecules, peptides, oligonucleotides and small molecule biomarkers) and Part 2 (hybrid LBA/LCMS for biotherapeutics and regulatory agencies' inputs) are published in volume 10 of Bioanalysis, issues 22 and 23 (2018), respectively.


Assuntos
Antígenos/análise , Bioensaio/normas , Citometria de Fluxo/normas , Terapia Genética/normas , Farmacocinética , Antígenos/imunologia , Bioensaio/métodos , Biomarcadores/análise , Biotecnologia , Citometria de Fluxo/métodos , Órgãos Governamentais , Humanos , Valores de Referência
12.
Protein Sci ; 13(2): 494-503, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14718652

RESUMO

Directed evolution technologies were used to selectively improve the stability of an enzyme without compromising its catalytic activity. In particular, this article describes the tandem use of two evolution strategies to evolve a xylanase, rendering it tolerant to temperatures in excess of 90 degrees C. A library of all possible 19 amino acid substitutions at each residue position was generated and screened for activity after a temperature challenge. Nine single amino acid residue changes were identified that enhanced thermostability. All 512 possible combinatorial variants of the nine mutations were then generated and screened for improved thermal tolerance under stringent conditions. The screen yielded eleven variants with substantially improved thermal tolerance. Denaturation temperature transition midpoints were increased from 61 degrees C to as high as 96 degrees C. The use of two evolution strategies in combination enabled the rapid discovery of the enzyme variant with the highest degree of fitness (greater thermal tolerance and activity relative to the wild-type parent).


Assuntos
Evolução Molecular Direcionada/métodos , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Substituição de Aminoácidos , Endo-1,4-beta-Xilanases/química , Estabilidade Enzimática , Variação Genética/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Mapeamento de Peptídeos , Homologia de Sequência de Aminoácidos , Temperatura de Transição
13.
Chem Res Toxicol ; 21(3): 668-77, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18251511

RESUMO

This study demonstrates that benzo[g]chrysene-11,12-dihydrodiol (B[g]C-11,12-dihydrodiol) derived from the fjord-region parent hydrocarbon B[g]C is oxidized by rat AKR1C9 with a k c a t/ K m 100 times greater than that observed with the commonly studied bay-region benzo[ a]pyrene-7,8-dihydrodiol (B[a]P-7,8-dihydrodiol). Conversely, despite its strikingly similar structure to B[ g]C-11,12-dihydrodiol, benzo[ c]phenanthrene-3,4-dihydrodiol (B[ c]Ph-3,4-dihydrodiol) is consumed by AKR1C9 at sluggish rates comparable to those observed with B[ a]P-7,8-dihydrodiol. CD spectroscopy revealed that only the (+)-B[ g]C-11,12-dihydrodiol stereoisomer was oxidized, while AKR1C9 oxidized both stereoisomers of B[a]P-7,8-dihydrodiol and B[ c]Ph-3,4-dihydrodiol. The (+)- S, S- and (-)- R, R-stereoisomers of B[g]C-11,12-dihydrodiol were purified by chiral RP-HPLC. The 11 S,12 S-stereoisomer was oxidized at the same rate as the racemate. The 11 R,12 R-stereoisomer did not act as an inhibitor to AKR1C9, indicating that the (-)- R, R-stereoisomer was excluded from the active site. To understand the basis of stereochemical preference, we screened alanine-scanning mutants of active site residues of AKR1C9. These studies revealed that in comparison to the wild type, F129A, W227A, and Y310A enabled the oxidation of both the B[g]C-11 S,12 S-dihydrodiol and the B[g]C-11 R,12 R-dihydrodiol. Molecular modeling revealed that unlike B[a]P-7,8-dihydrodiol and B[ c]Ph-3,4-dihydrodiol, B[g]C-11,12-dihydrodiol enantiomers are significantly bent out of plane. As a consequence, the (-)- R, R-stereoisomer was prevented from binding to the active site because of unfavorable interactions with F129, W227, or Y310. Additionally, LC/MS validated that the product of the reaction of B[g]C-11,12-dihydrodiol oxidation catalyzed by AKR1C9 was B[g]C-11,12-dione, which was trapped in vitro with the nucleophile 2-mercaptoethanol. The similarity between rates of trans-dihydrodiol oxidation by the rat and human liver specific AKRs (AKR1C9 and AKR1C4) implicate these enzymes in hepatocarcinogenesis in rats observed with the fjord-region PAH.


Assuntos
Crisenos/metabolismo , Fígado/enzimologia , Oxirredutases/metabolismo , Fenantrenos/metabolismo , Alanina/genética , Oxirredutases do Álcool/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Crisenos/química , Dicroísmo Circular , Humanos , Técnicas In Vitro , Indicadores e Reagentes , Cinética , Fígado/metabolismo , Espectrometria de Massas , Mercaptoetanol/metabolismo , Modelos Moleculares , Mutação/genética , Oxirredutases/genética , Fenantrenos/química , Ratos , Ratos Endogâmicos F344 , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Appl Microbiol Biotechnol ; 74(1): 113-24, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17103163

RESUMO

A unique multifunctional glycosyl hydrolase was discovered by screening an environmental DNA library prepared from a microbial consortium collected from cow rumen. The protein consists of two adjacent catalytic domains. Sequence analysis predicted that one domain conforms to glycosyl hydrolase family 5 and the other to family 26. The enzyme is active on several different beta-linked substrates and possesses mannanase, xylanase, and glucanase activities. Site-directed mutagenesis studies on the catalytic residues confirmed the presence of two functionally independent catalytic domains. Using site-specific mutations, it was shown that one catalytic site hydrolyzes beta-1,4-linked mannan substrates, while the second catalytic site hydrolyzes beta-1,4-linked xylan and beta-1,4-linked glucan substrates. Polysaccharide Analysis using Carbohydrate gel Electrophoresis (PACE) also confirmed that the enzyme has discrete domains for binding and hydrolysis of glucan- and mannan-linked polysaccharides. Such multifunctional enzymes have many potential industrial applications in plant processing, including biomass saccharification, animal feed nutritional enhancement, textile, and pulp and paper processing.


Assuntos
Glicosídeo Hidrolases , Complexos Multienzimáticos , Rúmen/microbiologia , Animais , Sequência de Bases , Bovinos , Biblioteca Gênica , Glucanos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Microbiologia Industrial , Mananas/metabolismo , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutagênese Sítio-Dirigida , Análise de Sequência de DNA , Xilanos/metabolismo
15.
J Biol Chem ; 277(27): 24799-808, 2002 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-11978787

RESUMO

Polycyclic aromatic hydrocarbons (PAH) are environmental pollutants and suspected human lung carcinogens. In patients with non-small cell lung carcinoma, differential display shows that aldo-keto reductase (AKR1C) transcripts are dramatically overexpressed. However, whether AKR1C isoforms contribute to the carcinogenic process and oxidize potent PAH trans-dihydrodiols (proximate carcinogens) to reactive and redox active o-quinones is unknown; nor is it known whether these reactions occur in human lungs. We now show that four homogeneous human recombinant aldo-keto reductases (AKR1C1-AKR1C4) are regioselective and oxidize only the relevant non-K region trans-dihydrodiols. However, these enzymes are not stereo-selective, since they oxidized 100% of these racemic substrates. The highest utilization ratios (V(max)/K(m)) were observed for some of the most potent proximate carcinogens known (e.g. 7,12-dimethylbenz[a]anthracene-3,4-diol (DMBA-3,4-diol) and benzo[g]chrysene-11,12-diol). In vitro, DMBA-3,4-diol was oxidized by AKR1C4 to the highly reactive 7,12-dimethylbenz[a]anthracene-3,4-dione (DMBA-3,4-dione), which was trapped in situ as its mono- and bis-thioether conjugates, which arise from the sequential 1,6- and 1,4-Michael addition of thiol nucleophiles. Human multiple tissue expression array analysis showed that AKR1C isoform transcripts were highly expressed in the human lung carcinoma cell line A549. Isoform-specific reverse transcriptase-PCR showed that AKR1C1, AKR1C2, and AKR1C3 transcripts were all expressed. Western blot analysis and functional assays confirmed high expression of AKR1C protein and enzyme activity in these lung cells. A549 cell lysates were found to convert DMBA-3,4-diol to the corresponding o-quinone. In trapping experiments, LC/MS analysis identified peaks in the cell lysates that corresponded to the synthetically prepared mono- and bis-thioether conjugates of DMBA-3,4-dione. This quinone is one of the most electrophilic and redox-active o-quinones produced by AKRs. Its unique ability to form bis-thioether conjugates parallels the formation of bis- and tris-glutathionyl conjugates of hydroquinone, which display end organ toxicity. The ability to measure DMBA-3,4-dione formation in A549 cells implicates the AKR pathway in the metabolic activation of PAH in human lung.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Carcinógenos/toxicidade , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , 20-Hidroxiesteroide Desidrogenases/genética , Aldeído Redutase , Aldo-Ceto Redutases , Biotransformação , Humanos , Hidroxiesteroide Desidrogenases/genética , Isoenzimas/genética , Cinética , Neoplasias Pulmonares , Oxirredução , Relação Estrutura-Atividade , Transcrição Gênica , Células Tumorais Cultivadas
16.
Appl Environ Microbiol ; 70(6): 3609-17, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15184164

RESUMO

Recombinant DNA technologies enable the direct isolation and expression of novel genes from biotopes containing complex consortia of uncultured microorganisms. In this study, genomic libraries were constructed from microbial DNA isolated from insect intestinal tracts from the orders Isoptera (termites) and Lepidoptera (moths). Using a targeted functional assay, these environmental DNA libraries were screened for genes that encode proteins with xylanase activity. Several novel xylanase enzymes with unusual primary sequences and novel domains of unknown function were discovered. Phylogenetic analysis demonstrated remarkable distance between the sequences of these enzymes and other known xylanases. Biochemical analysis confirmed that these enzymes are true xylanases, which catalyze the hydrolysis of a variety of substituted beta-1,4-linked xylose oligomeric and polymeric substrates and produce unique hydrolysis products. From detailed polyacrylamide carbohydrate electrophoresis analysis of substrate cleavage patterns, the xylan polymer binding sites of these enzymes are proposed.


Assuntos
Bactérias/enzimologia , Sistema Digestório/microbiologia , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Fungos/enzimologia , Isópteros/microbiologia , Mariposas/microbiologia , Sequência de Aminoácidos , Animais , Bactérias/genética , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , DNA Fúngico/análise , DNA Fúngico/isolamento & purificação , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/classificação , Fungos/genética , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA