RESUMO
The present review aims to collect the published literature pertaining the recognition of isobaric compounds (isomers or stereoisomers) using the features of tandem mass spectrometry (MS) experiments without any chromatographic separation or chemical modification (derivatization or isotopic enrichment) of the analytes. MS/MS methods possess high selectivity, wide dynamic range and high throughput capabilities. Generally, tandem MS has limited capability for distinguishing isomers that fragment similarly. However, some MS/MS methods have been developed and positively applied to isomers discrimination. Among the literature on this topic, the applications that fit on the review subject can be summarized as follow: (1) chiral discrimination by the kinetic method, (2) the use energy-resolved tandem mass spectra and the survival yield (SY) representation, (3) the kinetics evaluation of the ion-molecule interaction and (4) the postprocessing mathematical algorithm to resolve the isomers in MS/MS signal.
RESUMO
OBJECTIVES: We characterized the microbiota in SSc, focusing on the skin-oral-gut axis and the serum and faecal free fatty acid (FFA) profile. METHODS: Twenty-five SSc patients with ACA or anti-Scl70 autoantibodies were enrolled. The microbiota of faecal, saliva and superficial epidermal samples was assessed through next-generation sequencing analysis. GC-MS was used to quantify faecal and serum FFAs. Gastrointestinal symptoms were investigated with the University of California Los Angeles Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument (UCLA GIT-2.0) questionnaire. RESULTS: The ACA+ and anti-Scl70+ groups displayed different cutaneous and faecal microbiota profiles. The classes of cutaneous Sphingobacteriia and Alphaproteobacteria, the faecal phylum Lentisphaerae, the levels of the classes Lentisphaeria and Opitutae, and the genus NA-Acidaminococcaceae were significantly higher in faecal samples from the ACA+ patients than in samples from the anti-Scl70+ patients. The cutaneous Sphingobacteria and the faecal Lentisphaerae were significantly correlated (rho = 0.42; P = 0.03). A significant increase in faecal propionic acid was observed in ACA+ patients. Moreover, all levels of faecal medium-chain FFAs and hexanoic acids were significantly higher in the ACA+ group than in the anti-Scl70+ group (P < 0.05 and P < 0.001, respectively). In the ACA+ group, the analysis of the serum FFA levels showed an increasing trend in valeric acid. CONCLUSION: Different microbiota signatures and FFA profiles were found for the two groups of patients. Despite being in different body districts, the cutaneous Sphingobacteria and faecal Lentisphaerae appear interdependent.
Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Escleroderma Sistêmico , Humanos , Fezes , PeleRESUMO
Free fatty acids (FFA) have gained research interest owing to their functions in both local and systemic immune regulation. Changes in the serum levels of anti-inflammatory short chain fatty acids (SCFA), primarily derived from the gut microbiota, and pro-inflammatory medium (MCFA) and long (LCFA) chain fatty acids, derived from either the gut microbiota or the diet, have been associated with autoimmunity. Circulating FFA were retrospectively analysed by a gas chromatography-mass spectrometry method in the serum of 18 patients with pemphigus vulgaris (PV) at the baseline and 6 months (n = 10) after immunosuppressive treatments, and 18 healthy controls (HC). Circulating FFA were correlated with the Pemphigus Disease Area Index (PDAI) and serum concentrations of interferon-gamma (IFN-γ), Interleukin (IL)-17A, IL-5, IL-10 and IL-21. Principal Component analysis computed on FFA abundances revealed significant differences in the profile of SCFA (p = 0,012), MCFA (p = 0.00015) and LCFA (p = 0,035) between PV patients and HC, which were not significantly changed by immunosuppressive treatments. PV patients showed a significantly lower serum concentration of propionic (p < 0.0005) and butyric (p < 0.0005) acids, SCFA with anti-inflammatory functions, while hexanoic (p < 0.0005) and hexadecanoic (p = 0.0006) acids, pro-inflammatory MCFA and LCFA respectively, were over-represented. Treatments induced a significant decrease of hexanoic (p = 0.035) and a further increase of hexadecanoic (p = 0.046) acids. Positive correlations emerged between IFN-γ and acetic acid (Rho = 0.60), IFN-γ and hexanoic acid (Rho = 0.46), IL-5 and both hexadecanoic acid (Rho = 0.50) and octadecanoic acid (Rho = 0.53), butyric acid and PDAI (Rho = 0.53). PV was associated with a remarked imbalance of circulating FFA compared to HC. The serum alterations of SCFA, MCFA, and LCFA may contribute to promoting inflammation in PV. Deeper insights into the immunomodulatory functions of these molecules may pave the way for personalized dietary interventions in PV patients.
Assuntos
Pênfigo , Humanos , Ácidos Graxos não Esterificados , Interleucina-5 , Estudos Retrospectivos , Ácidos Graxos , Ácidos Graxos Voláteis , Anti-InflamatóriosRESUMO
PURPOSE: Cough represents a natural mechanism that plays an important defensive role in the respiratory tract, but in some conditions, it may become persistent, nonproductive, and harmful. In general, refractory chronic cough (RCC) occurs in about 20% of individuals; hence, we aimed to assess the presence of altered gut-lung communication in RCC patients through a compositional and functional characterization of both gut (GM) and oral microbiota (OM). METHODS: 16S rRNA sequencing was used to characterize both GM and OM composition of RCC patients and healthy controls (HC). PICRUST2 assessed functional changes in microbial communities while gas chromatography was used to evaluate fecal short-chain fatty acid levels and serum-free fatty acid (FFA) abundances. RESULTS: In comparison with HC, RCC patients reported increased saliva alpha-diversity and statistically significant beta-diversity in both GM and OM. Also, a, respectively, significant increased or reduced Firmicutes/Bacteroidota ratio in stool and saliva samples of RCC patients has been shown, in addition to a modification of the abundances of several taxa in both GM and OM. Moreover, a potential fecal over-expression of lipopolysaccharide biosynthesis and lipoic acid metabolism pathways and several differences in serum FFA levels have been reported in RCC patients than in HC. CONCLUSION: Since differences in both GM and OM of RCC patients have been documented, these findings could provide new information about RCC pathogenesis and also pave the way for the development of novel nutritional or pharmacological interventions for the management of RCC through the restoration of eubiotic gut-lung communication.
Assuntos
Carcinoma de Células Renais , Microbioma Gastrointestinal , Neoplasias Renais , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Tosse Crônica , Pulmão/químicaRESUMO
The tandem mass spectrometry (MS/MS) approach employing an ion trap mass analyzer (IT) was evaluated in isomers recognition. The proposed approach consists of sole, simple, and rapid liquid chromatographic separation (HPLC) without requiring resolution between the analytes. Then, the MS/MS properties were optimized to solve the signal assignment using post-processing data elaboration (LEDA). The IT-MS/MS experiment uses the same site, helium as collision gas, and different time steps to modify the applied conditions on the studied ions. Nevertheless, helium cannot ensure the quick energization of the precursor ion due to its small cross-section. Then, different combinations between excitation amplitude (ExA) and excitation time (ExT) were tested to achieve the activation of the fragmentation channels and the formation of the MS/MS spectrum. Usually, the IT-MS/MS acquisition cycle is longer for other multistage instruments, decreasing the frequency of sample data collection and influencing the chromatographic profile. To solve these problems, two time segments were set up, and the elution conditions were optimized with a compromise between peaks distinction and run time reduction. The developed HPLC-MS/MS method was checked and applied to analyze a series of human plasma samples spiked with an equimolar mixture of pair of isomers.
Assuntos
Hélio , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , AlgoritmosRESUMO
Metformin is the most prescribed glucose-lowering drug worldwide; globally, over 100 million patients are prescribed this drug annually. Some different action mechanisms have been proposed for this drug, but, surprisingly, no metabolite of metformin has ever been described. It was considered interesting to investigate the possible reaction of metformin with glucose following the Maillard reaction pattern. The reaction was first performed in in vitro conditions, showing the formation of two adducts that originated by the condensation of the two molecular species with the losses of one or two water molecules. Their structures were investigated by liquid chromatography coupled with mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS) and accurate mass measurements (HRMS). The species originated via the reaction of glucose and metformin and were called metformose and dehydrometformose, and some structural hypotheses were conducted. It is worth to emphasize that they were detected in urine samples from a diabetic patient treated with metformin and consequently they must be considered metabolites of the drug, which has never been identified before now. The glucose-related substructure of these compounds could reflect an improved transfer across cell membranes and, consequently, new hypotheses could be made about the biological targets of metformin.
Assuntos
Metformina , Humanos , Espectrometria de Massas em Tandem , Espectrometria de Massa com Cromatografia Líquida , Membrana Celular , GlucoseRESUMO
The composition of the gut microbiota (GM) undergoes significant changes during pregnancy, influenced by metabolic status, energy homeostasis, fat storage, and hormonal and immunological modifications. Moreover, dysbiosis during pregnancy has been associated with preterm birth, which is influenced by factors such as cervical shortening, infection, inflammation, and oxidative stress. However, dysbiosis also affects the levels of lipopolysaccharide-binding protein (LBP), short-chain fatty acids (SCFAs), and free fatty acids (FFA) in other tissues and the bloodstream. In this study, we investigated the plasmatic levels of some pro-inflammatory cytokines, such as matrix metalloproteinases-8 (MMP-8), interleukin-8 (IL-8), heat shock protein 70 (Hsp70), and microbial markers in pregnant women with a short cervix (≤25 mm) compared to those with normal cervical length (>25 mm). We examined the differences in the concentration of these markers between the two groups, also assessing the impact of gestational diabetes mellitus. Understanding the relationship between GM dysbiosis, inflammatory mediators, and cervical changes during pregnancy may contribute to the identification of potential biomarkers and therapeutic targets for the prevention and management of adverse pregnancy outcomes, including preterm birth.
Assuntos
Diabetes Gestacional , Microbioma Gastrointestinal , Nascimento Prematuro , Recém-Nascido , Gravidez , Humanos , Feminino , Gestantes , Colo do Útero , DisbioseRESUMO
Pannexins are an interesting new target in medicinal chemistry, as they are involved in many pathologies such as epilepsy, ischemic stroke, cancer and Parkinson's disease, as well as in neuropathic pain. They are a family of membrane channel proteins consisting of three members, Panx-1, Panx-2 and Panx-3, and are expressed in vertebrates. In the present study, as a continuation of our research in this field, we report the design, synthesis and pharmacological evaluation of new quinoline-based Panx-1 blockers. The most relevant compounds 6f and 6g show an IC50 = 3 and 1.5 µM, respectively, and are selective Panx-1 blockers. Finally, chemical stability, molecular modelling and X-ray crystallography studies have been performed providing useful information for the realization of the project.
Assuntos
Neuralgia , Quinolinas , Animais , Humanos , Modelos Moleculares , Quinolinas/farmacologia , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismoRESUMO
Lignans are non-flavonoid polyphenols present in a wide range of foods frequently consumed in the Western world, such as seeds, vegetables and fruits, and beverages such as coffee, tea and wine. In particular, the human gut microbiota (GM) can convert dietary lignans into biologically active compounds, especially enterolignans (i.e., enterolactone and enterodiol), which play anti-inflammatory and anti-oxidant roles, act as estrogen receptor activators and modulate gene expression and/or enzyme activity. Interestingly, recent evidence documenting those dietary interventions involving foods enriched in lignans have shown beneficial and protective effects on various human pathologies, including colorectal and breast cancer and cardiovascular diseases. However, considering that more factors (e.g., diet, food transit time and intestinal redox state) can modulate the lignans bioactivation by GM, there are usually remarkable inter-individual differences in urine, fecal and blood concentrations of enterolignans; hence, precise and validated analytical methods, especially gas/liquid chromatography coupled to mass spectrometry, are needed for their accurate quantification. Therefore, this review aims to summarize the beneficial roles of enterolignans, their interaction with GM and the new methodological approaches developed for their evaluation in different biological samples, since they could be considered future promising nutraceuticals for the prevention of human chronic disorders.
Assuntos
Microbioma Gastrointestinal , Lignanas , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Verduras/química , Dieta , Lignanas/químicaRESUMO
This paper proposes a tandem mass spectrometry (MS/MS) approach in isomer recognition by playing in the "energetic dimension" of the experiment. The chromatographic set up (HPLC) was tuned to minimize the run time, without requiring high efficiency or resolution between the isomers. Then, the MS/MS properties were explored to solve the signal assignment by performing a series of energy resolved experiments in order to optimize the parameters, and by applying an interesting post-processing data elaboration tool (LEDA). The reliability of the new approach was evaluated, determining the accuracy and precision of the quantitative results through analysis of the isomer mixture solutions. Next, the proposed method was applied in a chemical stability study of human plasma samples through the simultaneous addition of a pair of isomers. In the studied case, only one of the isomers suffered of enzymatic hydrolysis; therefore, the influence of the stable isomer on the degradation rate of the other was verified. In order to monitor this process correctly, it must be possible to distinguish each isomer present in the sample, quantify it, and plot its degradation profile. The reported results demonstrated the effectiveness of the LEDA algorithm in separating the isomers, without chromatographic resolution, and monitoring their behavior in human plasma samples.
Assuntos
Algoritmos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , IsomerismoRESUMO
Human neutrophil elastase (HNE) is a serine protease that is expressed in polymorphonuclear neutrophils. It has been recognized as an important therapeutic target for treating inflammatory diseases, especially related to the respiratory system, but also for various types of cancer. Thus, compounds able to inhibit HNE are of great interest in medicinal chemistry. In the present paper, we report the synthesis and biological evaluation of a new series of HNE inhibitors with an innovative 1,5,6,7-tetrahydro-4H-indazol-4-one core that was developed as a molecular modification of our previously reported indazole-based HNE inhibitors. Since the 1,5,6,7-tetrahydro-4H-indazol-4-one scaffold can occur in two possible tautomeric forms, the acylation/alkylation reactions resulted in a mixture of the two isomers, often widely unbalanced in favor of one form. Using analytical techniques and NMR spectroscopy, we characterized and separated the isomer pairs and confirmed the compounds used in biological testing. Analysis of the compounds for HNE inhibitory activity showed that they were potent inhibitors, with Ki values in the low nanomolar range (6-35 nM). They also had reasonable stability in aqueous buffer, with half-lives over 1 h. Overall, our results indicate that the 1,5,6,7-tetrahydro-4H-indazol-4-one core is suitable for the synthesis of potent HNE inhibitors that could be useful in the development of new therapeutics for treating diseases involving excessive HNE activity.
Assuntos
Elastase de Leucócito/antagonistas & inibidores , Inibidores de Serina Proteinase/farmacologia , Relação Dose-Resposta a Droga , Humanos , Elastase de Leucócito/metabolismo , Estrutura Molecular , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-AtividadeRESUMO
We report here a new drug design strategy for producing membrane-impermeant carbonic anhydrase (CA; EC 4.2.1.1) inhibitors selectively targeting the tumor-associated, membrane-bound human CAs IX and XII over off-target cytosolic isoforms. To date, this approach has only been pursued by including permanent positively charged pyridinium type or highly hydrophilic glycosidic moieties into the structure of aromatic sulfonamide CA inhibitors (CAIs). Aliphatic (propyl and butyl) sulfonic acid tails, deprotonated at physiological pH, were thus incorporated onto a benzenesulfonamide scaffold by a common 1,2,3-triazole linker and different types of spacers. Twenty such derivatives were synthesized and tested for their inhibition of target (hCAs IV, IX, and XII) and off-target CAs (hCAs I and II). Most sulfonate CAIs induced a potent inhibition of hCAs II, IX, and XII up to a low nanomolar KI range (0.9-459.4 nM) with a limited target/off-target CA selectivity of action. According to the drug design schedule, a subset of representative derivatives was assessed for their cell membrane permeability using Caco-2 cells and a developed FIA-MS/MS method. The complete membrane impermeability of the sulfonate tailed CAIs (≥98%) validated these negatively charged moieties as being suitable for achieving, in vivo, the selective targeting of the tumor-associated CAs over off-target ones.
Assuntos
Antígenos de Neoplasias/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Desenho de Fármacos/métodos , Neoplasias/tratamento farmacológico , Espectrometria de Massas em Tandem/métodos , Células CACO-2 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Ácidos Sulfônicos/farmacologiaRESUMO
Metabolic syndrome (MetS) clusters cardiovascular and metabolic risk factors along with hypogonadism and erectile dysfunction. Lifestyle modifications including physical exercise (PhyEx) are well-known treatments for this condition. In this study, we analyzed the effect of PhyEx on hypothalamic-pituitary-testis axis and erectile function by use of an animal MetS model, previously established in rabbits fed a high-fat diet (HFD). Rabbits fed a regular diet (RD) were used as controls. A subset of both groups was trained on a treadmill. HFD rabbits showed typical MetS features, including HG (reduced T and LH) and impairment of erectile function. PhyEx in HFD rabbits completely restored plasma T and LH and the penile alterations. At testicular and hypothalamic levels, an HFD-induced inflammatory status was accompanied by reduced T synthesis and gonadotropin-releasing hormone (GnRH) immunopositivity, respectively. In the testis, PhyEx normalized HFD-related macrophage infiltration and increased the expression of steroidogenic enzymes and T synthesis. In the hypothalamus, PhyEx normalized HFD-induced gene expression changes related to inflammation and glucose metabolism, restored GnRH expression, particularly doubling mRNA levels, and regulated expression of molecules related to GnRH release (kisspeptin, dynorphin). Concerning MetS components, PhyEx significantly reduced circulating cholesterol and visceral fat. In multivariate analyses, cholesterol levels resulted as the main factor associated with MetS-related alterations in penile, testicular, and hypothalamic districts. In conclusion, our results show that PhyEx may rescue erectile function, exert anti-inflammatory effects on hypothalamus and testis, and increase LH levels and T production, thus supporting a primary role for lifestyle modification to combat MetS-associated hypogonadism and erectile dysfunction.
Assuntos
Disfunção Erétil/metabolismo , Hipogonadismo/metabolismo , Síndrome Metabólica/metabolismo , Condicionamento Físico Animal , Animais , Glicemia/metabolismo , Colesterol/metabolismo , Dinorfinas/genética , Disfunção Erétil/fisiopatologia , Hormônio Liberador de Gonadotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Kisspeptinas/genética , Hormônio Luteinizante/metabolismo , Macrófagos , Masculino , Síndrome Metabólica/fisiopatologia , Coelhos , Testículo/metabolismo , Testículo/patologia , Testosterona/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Rheumatoid arthritis (RA) is a chronic inflammatory disease caused by a faulty autoimmune response. Recently, it was reported that some human carbonic anhydrases (CAs) isoforms are overexpressed in inflamed synovium of RA patients. New CA inhibitors (CAIs) incorporating CA-binding moiety and the cyclooxygenase inhibitor tail (nonsteroidal anti-inflammatory drug [NSAID] type) were studied. The aim of this work is the evaluation of the chemical stability of NSAID - CAI hybrids towards spontaneous or enzymatic hydrolysis by LC-MS/MS. The analytes are isomer pairs of 6- or 7-hydroxycoumarin, their different fragment ions abundances allowed the development of a mathematical tool (LEDA) to distinguish them. LEDA reliability at ng mL-1 level was checked (>90%), being proved the effectiveness in the correct assignment of the isomer present in the sample. The hybrids resulted stable in all tested matrices allowing us to conclude that these compounds reach the target tissues unmodified, opening perspectives for their development in the treatment of inflammation.
Assuntos
Anti-Inflamatórios não Esteroides/sangue , Inibidores da Anidrase Carbônica/sangue , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Cromatografia Líquida , Humanos , Hidrólise , Estereoisomerismo , Relação Estrutura-Atividade , Espectrometria de Massas em TandemRESUMO
The rising demand for novel cosmeceutical ingredients has highlighted peptides as a significant category. Based on the collagen turnover modulation properties of SA1-III, a decapeptide derived from a serine protease inhibitor (serpin A1), this study focused on designing shorter, second-generation peptides endowed with improved properties. A tetrapeptide candidate was further modified employing the retro-inverso approach that uses d-amino acids aiming to enhance peptide stability against dermal enzymes. Surprisingly, the modified peptide AAT11RI displayed notably high activity in vitro, as compared to its precursors, and suggested a mode of action based on the inhibition of collagen degradation. It is worth noting that AAT11RI showcases stability against dermal enzymes contained in human skin homogenates due to its rationally designed structure that hampers recognition by most proteases. The rational approach we embraced in this study underscored the added value of substantiated claims in the design of new cosmeceutical ingredients, representing a rarity in the field.
Assuntos
Cosmecêuticos , alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/química , alfa 1-Antitripsina/farmacologia , Peptídeos/farmacologia , Peptídeos/química , Colágeno , Adjuvantes ImunológicosRESUMO
Fungi and bacteria can be found coexisting in a wide variety of environments. The combination of their physical and molecular interactions can result in a broad range of outcomes for each partner, from competition to cooperative relationships. Most of these interactions can also be found in the human gastrointestinal tract. The gut microbiota is essential for humans, helping the assimilation of food components as well as the prevention of pathogen invasions through host immune system modulation and the production of beneficial metabolites such as short-chain fatty acids (SCFAs). Several factors, including changes in diet habits due to the progressive Westernization of the lifestyle, are linked to the onset of dysbiosis statuses that impair the correct balance of the gut environment. It is therefore crucial to explore the interactions between commensal and diet-derived microorganisms and their influence on host health. Investigating these interactions through co-cultures between human- and fermented food-derived lactobacilli and yeasts led us to understand how the strains' growth yield and their metabolic products rely on the nature and concentration of the species involved, producing either cooperative or competitive dynamics. Moreover, single cultures of yeasts and lactobacilli proved to be ideal candidates for developing immune-enhancing products, given their ability to induce trained immunity in blood-derived human monocytes in vitro. Conversely, co-cultures as well as mixtures of yeasts and lactobacilli have been shown to induce an anti-inflammatory response on the same immune cells in terms of cytokine profiles and activation surface markers, opening new possibilities in the design of probiotic and dietary therapies.
Assuntos
Microbioma Gastrointestinal , Lactobacillus , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/imunologia , Microbioma Gastrointestinal/imunologia , Lactobacillus/imunologia , Probióticos , Animais , Interações Microbianas/imunologia , Disbiose/imunologiaRESUMO
Oleuropein (OLE), a phenolic compound particularly abundant in the olive leaves, has been reported to have beneficial activities against colorectal cancer (CRC). In vitro studies suggested that these latter could be due to a modulation of the intestinal microbiota. Aiming to evaluate if OLE could affect the intestinal microbiota and the plasma metabolome, an antioxidant oleuropein-rich leaf extract (ORLE) was administered for one week to PIRC rats (F344/NTac-Apcam1137), a genetic model mimicking CRC. ORLE treatment significantly modulated the gut microbiota composition. Plasma metabolomic profiles revealed a significant predictive ability for amino acids, medium-chain fatty acids, and aldehydes. Pathway analysis revealed a significant decrease in phosphatidylcholine accumulation (LogFC = -1.67) in PIRC rats. These results suggest a significant effect of ORLE administration on faecal microbiota profiles and plasma metabolomes, thereby offering new omics-based insights into its protective role in CRC progression.
RESUMO
BACKGROUND: In the current management of neuropathic pain, in addition to antidepressants and anticonvulsants, the use of opioids is wide, despite their related and well-known issues. OBJECTIVE: N-palmitoylethanolamine (PEA), a natural fatty-acid ethanolamide whose anti-inflammatory, neuroprotective, immune-modulating and anti-hyperalgesic activities are known, represents a promising candidate to modulate and/or potentiate the action of opioids. METHODS: This study was designed to evaluate if the preemptive and morphine concomitant administration of ultramicronized PEA, according to fixed or increasing doses of both compounds, delays the onset of morphine tolerance and improves its analgesic efficacy in the chronic constriction injury (CCI) model of neuropathic pain in rats. RESULTS: Behavioral experiments showed that the preemptive and co-administration of ultramicronized PEA significantly decreased the effective dose of morphine and delayed the onset of morphine tolerance. The activation of spinal microglia and astrocytes, commonly occurring both on opioid treatment and neuropathic pain, was investigated through GFAP and Iba-1 immunofluorescence. Both biomarkers were found to be increased in CCI untreated or morphine treated animals in a PEA-sensitive manner. The increased density of endoneural mast cells within the sciatic nerve of morphine-treated and untreated CCI rats was significantly reduced by ultramicronized PEA. The decrease of mast cell degranulation, evaluated in terms of reduced plasma levels of histamine and N-methyl-histamine metabolite, was mainly observed at intermediate-high doses of ultramicronized PEA, with or without morphine. CONCLUSION: Overall, these results show that the administration of ultramicronized PEA in CCI rats according to the study design fully fulfilled the hypotheses of this study.
Assuntos
Morfina , Neuralgia , Ratos , Animais , Morfina/farmacologia , Morfina/uso terapêutico , Mastócitos , Histamina/metabolismo , Histamina/farmacologia , Histamina/uso terapêutico , Neuralgia/tratamento farmacológico , Neuroglia/metabolismo , Analgésicos Opioides/farmacologiaRESUMO
Human neutrophil elastase (HNE) plays an essential role in host defense against bacteria but is also involved in several respiratory diseases. Recent reports suggest that compounds exhibiting a combination of HNE inhibitory activity with antiradical properties may be therapeutically beneficial for the treatment of respiratory diseases involving inflammation and oxidative stress. We report here the synthesis and biological evaluation of novel ebselen analogues exhibiting HNE inhibitory and antiradical activities. HNE inhibition was evaluated in an enzymatic system using human HNE, whereas antiradical activity was evaluated in a cell-based assay system using phorbol 12-myristate 13-acetate (PMA)-stimulated murine bone marrow leukocytes as the source of reactive oxygen species (ROS). HNE inhibition was due to the N-CO group targeting Ser195-OH at position 2 of the scaffold, while antiradical activity was due to the presence of the selenium atom. The most active compounds 4d, 4f, and 4j exhibited a good balance between anti-HNE (IC50 = 0.9-1.4 µM) and antiradical activity (IC50 = 0.05-0.7 µM). Additionally, the solid-state structure of 4d was determined and compared to that of the similar compound N-propionyl-1,2-benzisoselenazol-3(2H)-one.
RESUMO
Chlorogenic acids, the esters of caffeic and quinic acids, are the main phenolic acids detected in Acmella oleracea extracts and have gained increasing interest in recent years due to their important biological activities. Given their structural similarity and instability, the correct analysis and identification of these compounds in plants is challenging. This study aimed to propose a simple and rapid determination of the A. oleracea caffeoylquinic isomers, applying an HPLC-MS/MS method supported by a mathematical algorithm (Linear Equation of Deconvolution Analysis (LEDA)). The three mono- and the three di-caffeoylquinic acids in roots of Acmella plants were studied by an ion trap MS analyzer. A separation by a conventional chromatographic method was firstly performed and an MS/MS characterization by energetic dimension of collision-induced dissociation mechanism was carried out. The analyses were then replicated using a short HPLC column and a fast elution gradient (ten minutes). Each acquired MS/MS data were processed by LEDA algorithm which allowed to assign a relative abundance in the reference ion signal to each isomer present. Quantitative results showed no significant differences between the two chromatographic systems proposed, proving that the use of LEDA algorithm allowed the distinction of the six isomers in a quarter of the time.