Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 474(5): 731-749, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28057718

RESUMO

The role of reactive oxygen species (ROS) in osmotic stress, dextran sulfate sodium (DSS) and cyclic stretch-induced tight junction (TJ) disruption was investigated in Caco-2 cell monolayers in vitro and restraint stress-induced barrier dysfunction in mouse colon in vivo Live cell imaging showed that osmotic stress, cyclic stretch and DSS triggered rapid production of ROS in Caco-2 cell monolayers, which was blocked by depletion of intracellular Ca2+ by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Knockdown of CaV1.3 or TRPV6 channels blocked osmotic stress and DSS-induced ROS production and attenuated TJ disruption and barrier dysfunction. N-Acetyl l-cysteine (NAC) and l-NG-Nitroarginine methyl ester (l-NAME) blocked stress-induced TJ disruption and barrier dysfunction. NAC and l-NAME also blocked stress-induced activation of c-Jun N-terminal kinase (JNK) and c-Src. ROS was colocalized with the mitochondrial marker in stressed cells. Cyclosporin A blocked osmotic stress and DSS-induced ROS production, barrier dysfunction, TJ disruption and JNK activation. Mitochondria-targeted Mito-TEMPO blocked osmotic stress and DSS-induced barrier dysfunction and TJ disruption. Chronic restraint stress in mice resulted in the elevation of intracellular Ca2+, activation of JNK and c-Src, and disruption of TJ in the colonic epithelium. Furthermore, corticosterone administration induced JNK and c-Src activation, TJ disruption and protein thiol oxidation in colonic mucosa. The present study demonstrates that oxidative stress is a common signal in the mechanism of TJ disruption in the intestinal epithelium by different types of cellular stress in vitro and bio behavioral stress in vivo.


Assuntos
Cálcio/metabolismo , Colo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Psicológico/metabolismo , Junções Íntimas/metabolismo , Animais , Proteína Tirosina Quinase CSK , Células CACO-2 , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Quelantes/farmacologia , Colo/citologia , Colo/efeitos dos fármacos , Corticosterona/farmacologia , Ciclosporina/farmacologia , Sulfato de Dextrana/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Regulação da Expressão Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Pressão Osmótica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/agonistas , Estresse Mecânico , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Quinases da Família src/genética , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA