Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(1): 40-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937928

RESUMO

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Assuntos
Anticorpos Antivirais/imunologia , Coronavirus Humano 229E/imunologia , Coronavirus Humano OC43/imunologia , Proteção Cruzada/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Imunidade Adaptativa/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Criança , Pré-Escolar , Reações Cruzadas/imunologia , Humanos
2.
Nature ; 619(7969): 338-347, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380775

RESUMO

Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.


Assuntos
Aves , Interações entre Hospedeiro e Microrganismos , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Zoonoses Virais , Animais , Humanos , Aves/virologia , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Influenza Humana/virologia , Primatas , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Medição de Risco , Zoonoses Virais/prevenção & controle , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Replicação Viral
3.
Nature ; 617(7961): 555-563, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996873

RESUMO

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Assuntos
Infecções por Adenovirus Humanos , Dependovirus , Hepatite , Criança , Humanos , Doença Aguda/epidemiologia , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/genética , Infecções por Adenovirus Humanos/virologia , Alelos , Estudos de Casos e Controles , Linfócitos T CD4-Positivos/imunologia , Coinfecção/epidemiologia , Coinfecção/virologia , Dependovirus/isolamento & purificação , Predisposição Genética para Doença , Vírus Auxiliares/isolamento & purificação , Hepatite/epidemiologia , Hepatite/genética , Hepatite/virologia , Hepatócitos/virologia , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Fígado/virologia
4.
PLoS Pathog ; 20(8): e1012466, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150989

RESUMO

Most viral diseases display a variable clinical outcome due to differences in virus strain virulence and/or individual host susceptibility to infection. Understanding the biological mechanisms differentiating a viral infection displaying severe clinical manifestations from its milder forms can provide the intellectual framework toward therapies and early prognostic markers. This is especially true in arbovirus infections, where most clinical cases are present as mild febrile illness. Here, we used a naturally occurring vector-borne viral disease of ruminants, bluetongue, as an experimental system to uncover the fundamental mechanisms of virus-host interactions resulting in distinct clinical outcomes. As with most viral diseases, clinical symptoms in bluetongue can vary dramatically. We reproduced experimentally distinct clinical forms of bluetongue infection in sheep using three bluetongue virus (BTV) strains (BTV-1IT2006, BTV-1IT2013 and BTV-8FRA2017). Infected animals displayed clinical signs varying from clinically unapparent, to mild and severe disease. We collected and integrated clinical, haematological, virological, and histopathological data resulting in the analyses of 332 individual parameters from each infected and uninfected control animal. We subsequently used machine learning to select the key viral and host processes associated with disease pathogenesis. We identified and experimentally validated five different fundamental processes affecting the severity of bluetongue: (i) virus load and replication in target organs, (ii) modulation of the host type-I IFN response, (iii) pro-inflammatory responses, (iv) vascular damage, and (v) immunosuppression. Overall, we showed that an agnostic machine learning approach can be used to prioritise the different pathogenetic mechanisms affecting the disease outcome of an arbovirus infection.

5.
PLoS Pathog ; 19(11): e1011589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934791

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Virulência , Aprendizado de Máquina
6.
PLoS Biol ; 19(9): e3001352, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34491982

RESUMO

Antiviral defenses can sense viral RNAs and mediate their destruction. This presents a challenge for host cells since they must destroy viral RNAs while sparing the host mRNAs that encode antiviral effectors. Here, we show that highly upregulated interferon-stimulated genes (ISGs), which encode antiviral proteins, have distinctive nucleotide compositions. We propose that self-targeting by antiviral effectors has selected for ISG transcripts that occupy a less self-targeted sequence space. Following interferon (IFN) stimulation, the CpG-targeting antiviral effector zinc-finger antiviral protein (ZAP) reduces the mRNA abundance of multiple host transcripts, providing a mechanistic explanation for the repression of many (but not all) interferon-repressed genes (IRGs). Notably, IRGs tend to be relatively CpG rich. In contrast, highly upregulated ISGs tend to be strongly CpG suppressed. Thus, ZAP is an example of an effector that has not only selected compositional biases in viral genomes but also appears to have notably shaped the composition of host transcripts in the vertebrate interferome.


Assuntos
Fosfatos de Dinucleosídeos , Fatores Reguladores de Interferon/genética , RNA Viral , Proteínas de Ligação a RNA/metabolismo , Células A549 , Linhagem Celular , Humanos , Interferon beta/farmacologia , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Fenômenos Fisiológicos Virais , Vírus
7.
J Virol ; 96(23): e0125022, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36350154

RESUMO

The appearance of new dominant variants of concern (VOC) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the coronavirus disease 2019 (COVID-19) pandemic. Of these, the alpha variant (also known as B.1.1.7), which appeared initially in the United Kingdom, became the dominant variant in much of Europe and North America in the first half of 2021. The spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation adjacent to the polybasic cleavage site, which has been suggested to enhance S cleavage. Here, we show that the alpha spike protein confers a level of resistance to beta interferon (IFN-ß) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFN-ß and context-dependent resistance to IFITMs in the alpha S. P681H reduces dependence on endosomal cathepsins, consistent with enhanced cell surface entry. However, reversion of H681 does not reduce cleaved spike incorporation into particles, indicating that it exerts its effect on entry and IFN-ß downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOC may well also confer a replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCE Accumulating evidence suggests that variants of concern (VOC) of SARS-CoV-2 evolve to evade the human immune response, with much interest focused on mutations in the spike protein that escape from antibodies. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here, we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type I interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2 and enhancement by its paralogue IFITM3. The key determinant of this is a proline-to-histidine change at position 681 in S adjacent to the furin cleavage site, which in the context of the alpha spike modulates cell entry pathways of SARS-CoV-2. Reversion of the mutation is sufficient to restore interferon and IFITM2 sensitivity, highlighting the dynamic nature of the SARS CoV-2 as it adapts to both innate and adaptive immunity in the humans.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Furina/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Linhagem Celular , Mutação , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
PLoS Pathog ; 17(11): e1009820, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807954

RESUMO

Interferons play a critical role in regulating host immune responses to SARS-CoV-2, but the interferon (IFN)-stimulated gene (ISG) effectors that inhibit SARS-CoV-2 are not well characterized. The IFN-inducible short isoform of human nuclear receptor coactivator 7 (NCOA7) inhibits endocytic virus entry, interacts with the vacuolar ATPase, and promotes endo-lysosomal vesicle acidification and lysosomal protease activity. Here, we used ectopic expression and gene knockout to demonstrate that NCOA7 inhibits infection by SARS-CoV-2 as well as by lentivirus particles pseudotyped with SARS-CoV-2 Spike in lung epithelial cells. Infection with the highly pathogenic, SARS-CoV-1 and MERS-CoV, or seasonal, HCoV-229E and HCoV-NL63, coronavirus Spike-pseudotyped viruses was also inhibited by NCOA7. Importantly, either overexpression of TMPRSS2, which promotes plasma membrane fusion versus endosomal fusion of SARS-CoV-2, or removal of Spike's polybasic furin cleavage site rendered SARS-CoV-2 less sensitive to NCOA7 restriction. Collectively, our data indicate that furin cleavage sensitizes SARS-CoV-2 Spike to the antiviral consequences of endosomal acidification by NCOA7, and suggest that the acquisition of furin cleavage may have favoured the co-option of cell surface TMPRSS proteases as a strategy to evade the suppressive effects of IFN-induced endo-lysosomal dysregulation on virus infection.


Assuntos
COVID-19/virologia , Furina/metabolismo , Coativadores de Receptor Nuclear/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Linhagem Celular , Endossomos/metabolismo , Furina/genética , Expressão Gênica , Humanos , Evasão da Resposta Imune , Interferons/metabolismo , Lisossomos/enzimologia , Coativadores de Receptor Nuclear/genética , Isoformas de Proteínas , Proteólise , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Pseudotipagem Viral , Internalização do Vírus
9.
PLoS Pathog ; 17(9): e1009929, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534263

RESUMO

Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Resistência Microbiana a Medicamentos/genética , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Animais , Evolução Biológica , Chlorocebus aethiops , Humanos , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
10.
PLoS Pathog ; 17(12): e1010022, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34855916

RESUMO

Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of strategies for minimising COVID19 cases and the design of effective antigenic formulations. Here, we examine the sensitivity of variants of concern (VOCs) representative of the B.1.617.1 and B.1.617.2 (first associated with infections in India) and B.1.351 (first associated with infection in South Africa) lineages of SARS-CoV-2 to neutralisation by sera from individuals vaccinated with the BNT162b2 (Pfizer/BioNTech) and ChAdOx1 (Oxford/AstraZeneca) vaccines. Across all vaccinated individuals, the spike glycoproteins from B.1.617.1 and B.1.617.2 conferred reductions in neutralisation of 4.31 and 5.11-fold respectively. The reduction seen with the B.1.617.2 lineage approached that conferred by the glycoprotein from B.1.351 (South African) variant (6.29-fold reduction) that is known to be associated with reduced vaccine efficacy. Neutralising antibody titres elicited by vaccination with two doses of BNT162b2 were significantly higher than those elicited by vaccination with two doses of ChAdOx1. Fold decreases in the magnitude of neutralisation titre following two doses of BNT162b2, conferred reductions in titre of 7.77, 11.30 and 9.56-fold respectively to B.1.617.1, B.1.617.2 and B.1.351 pseudoviruses, the reduction in neutralisation of the delta variant B.1.617.2 surpassing that of B.1.351. Fold changes in those vaccinated with two doses of ChAdOx1 were 0.69, 4.01 and 1.48 respectively. The accumulation of mutations in these VOCs, and others, demonstrate the quantifiable risk of antigenic drift and subsequent reduction in vaccine efficacy. Accordingly, booster vaccines based on updated variants are likely to be required over time to prevent productive infection. This study also suggests that two dose regimes of vaccine are required for maximal BNT162b2 and ChAdOx1-induced immunity.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19 , Imunização Secundária , SARS-CoV-2/imunologia , Eficácia de Vacinas , Deriva e Deslocamento Antigênicos/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/prevenção & controle , Células HEK293 , Humanos
11.
PLoS Biol ; 18(4): e3000673, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32343693

RESUMO

The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an arthropod-borne virus of ruminants, emerged in livestock in northern Europe in 2006, spreading to most European countries by 2009 and causing losses of billions of euros. Although the outbreak was successfully controlled through vaccination by early 2010, puzzlingly, a closely related BTV-8 strain re-emerged in France in 2015, triggering a second outbreak that is still ongoing. The origin of this virus and the mechanisms underlying its re-emergence are unknown. Here, we performed phylogenetic analyses of 164 whole BTV-8 genomes sampled throughout the two outbreaks. We demonstrate consistent clock-like virus evolution during both epizootics but found negligible evolutionary change between them. We estimate that the ancestor of the second outbreak dates from the height of the first outbreak in 2008. This implies that the virus had not been replicating for multiple years prior to its re-emergence in 2015. Given the absence of any known natural mechanism that could explain BTV-8 persistence over this long period without replication, we hypothesise that the second outbreak could have been initiated by accidental exposure of livestock to frozen material contaminated with virus from approximately 2008. Our work highlights new targets for pathogen surveillance programmes in livestock and illustrates the power of genomic epidemiology to identify pathways of infectious disease emergence.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/virologia , Genoma Viral , Animais , Evolução Biológica , Bluetongue/epidemiologia , Vírus Bluetongue/genética , Surtos de Doenças , Europa (Continente)/epidemiologia , França , Gado/virologia , Mutação , Filogenia
12.
Behav Brain Sci ; 46: e387, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054358

RESUMO

We recognize today's deep neural network (DNN) models of language behaviors as engineering achievements. However, what we know intuitively and scientifically about language shows that what DNNs are and how they are trained on bare texts, makes them poor models of mind and brain for language organization, as it interacts with infant biology, maturation, experience, unique principles, and natural law.


Assuntos
Encéfalo , Redes Neurais de Computação , Humanos , Idioma
13.
J Virol ; 93(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31375575

RESUMO

Vesicular stomatitis Indiana virus (VSIV), formerly known as vesicular stomatitis virus (VSV) Indiana (VSVIND), is a model virus that is exceptionally sensitive to the inhibitory action of interferons (IFNs). Interferons induce an antiviral state by stimulating the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs can constrain viral replication, limit tissue tropism, reduce pathogenicity, and inhibit viral transmission. Since VSIV is used as a backbone for multiple oncolytic and vaccine strategies, understanding how ISGs restrict VSIV not only helps in understanding VSIV-induced pathogenesis but also helps us evaluate and understand the safety and efficacy of VSIV-based therapies. Thus, there is a need to identify and characterize the ISGs that possess anti-VSIV activity. Using arrayed ISG expression screening, we identified TRIM69 as an ISG that potently inhibits VSIV. This inhibition was highly specific as multiple viruses, including influenza A virus, HIV-1, Rift Valley fever virus, and dengue virus, were unaffected by TRIM69. Indeed, just one amino acid substitution in VSIV can govern sensitivity/resistance to TRIM69. Furthermore, TRIM69 is highly divergent in human populations and exhibits signatures of positive selection that are consistent with this gene playing a key role in antiviral immunity. We propose that TRIM69 is an IFN-induced inhibitor of VSIV and speculate that TRIM69 could be important in limiting VSIV pathogenesis and might influence the specificity and/or efficacy of vesiculovirus-based therapies.IMPORTANCE Vesicular stomatitis Indiana virus (VSIV) is a veterinary pathogen that is also used as a backbone for many oncolytic and vaccine strategies. In natural and therapeutic settings, viral infections like VSIV are sensed by the host, and as a result the host cells make proteins that can protect them from viruses. In the case of VSIV, these antiviral proteins constrain viral replication and protect most healthy tissues from virus infection. In order to understand how VSIV causes disease and how healthy tissues are protected from VSIV-based therapies, it is crucial that we identify the proteins that inhibit VSIV. Here, we show that TRIM69 is an antiviral defense that can potently and specifically block VSIV infection.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Estomatite Vesicular/metabolismo , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/fisiologia , Replicação Viral , Alelos , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Vírus da Dengue/fisiologia , Resistência à Doença , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferons/metabolismo , Interferons/farmacologia , Família Multigênica , Fosforilação , Transdução de Sinais , Proteínas com Motivo Tripartido/química , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Estomatite Vesicular/genética , Estomatite Vesicular/imunologia
14.
PLoS Biol ; 15(12): e2004086, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29253856

RESUMO

The host innate immune response mediated by type I interferon (IFN) and the resulting up-regulation of hundreds of interferon-stimulated genes (ISGs) provide an immediate barrier to virus infection. Studies of the type I 'interferome' have mainly been carried out at a single species level, often lacking the power necessary to understand key evolutionary features of this pathway. Here, using a single experimental platform, we determined the properties of the interferomes of multiple vertebrate species and developed a webserver to mine the dataset. This approach revealed a conserved 'core' of 62 ISGs, including genes not previously associated with IFN, underscoring the ancestral functions associated with this antiviral host response. We show that gene expansion contributes to the evolution of the IFN system and that interferomes are shaped by lineage-specific pressures. Consequently, each mammal possesses a unique repertoire of ISGs, including genes common to all mammals and others unique to their specific species or phylogenetic lineages. An analysis of genes commonly down-regulated by IFN suggests that epigenetic regulation of transcription is a fundamental aspect of the IFN response. Our study provides a resource for the scientific community highlighting key paradigms of the type I IFN response.


Assuntos
Imunidade Inata , Fatores Reguladores de Interferon/fisiologia , Interferon Tipo I/fisiologia , Mamíferos/imunologia , Animais , Mineração de Dados , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferon Tipo I/metabolismo , Especificidade da Espécie , Viroses/imunologia
15.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021901

RESUMO

Arboviruses can cause a variety of clinical signs, including febrile illness, arthritis, encephalitis, and hemorrhagic fever. The recent Zika epidemic highlighted the possibility that arboviruses may also negatively affect the male reproductive tract. In this study, we focused on bluetongue virus (BTV), the causative agent of bluetongue and one of the major arboviruses of ruminants. We show that rams that recovered from bluetongue displayed signs of testicular degeneration and azoospermia up to 100 days after the initial infection. Importantly, testicular degeneration was induced in rams experimentally infected with either a high (BTV-1IT2006)- or a low (BTV-1IT2013)-virulence strain of BTV. Rams infected with the low-virulence BTV strain displayed testicular lesions in the absence of other major clinical signs. Testicular lesions in BTV-infected rams were due to viral replication in the endothelial cells of the peritubular areas of the testes, resulting in stimulation of a type I interferon response, reduction of testosterone biosynthesis by Leydig cells and destruction of Sertoli cells and the blood-testis barrier in more severe cases. Hence, BTV induces testicular degeneration and disruption of spermatogenesis by replicating solely in the endothelial cells of the peritubular areas unlike other gonadotropic viruses. This study shows that a naturally occurring arboviral disease can cause testicular degeneration and affect male fertility at least temporarily.IMPORTANCE During the recent Zika epidemic, it has become apparent that arboviruses could potentially cause reproductive health problems in male patients. Little is known regarding the effects that arboviruses have on the male reproductive tract. Here, we studied bluetongue virus (BTV), an arbovirus of ruminants, and its effects on the testes of rams. We show that BTV was able to induce testicular degeneration in naturally and experimentally infected rams. Testicular degeneration was caused by BTV replication in the endothelial cells of the peritubular area surrounding the seminiferous tubules (the functional unit of the testes) and was associated with a localized type I interferon response, destruction of the cells supporting the developing germinal cells (Sertoli cells), and reduction of testosterone synthesis. As a result of BTV infection, rams became azoospermic. This study highlights that problems in the male reproductive tract caused by arboviruses could be more common than previously thought.


Assuntos
Vírus Bluetongue/patogenicidade , Bluetongue/complicações , Endotélio Vascular/patologia , Infertilidade Masculina/etiologia , Doenças dos Ovinos/etiologia , Espermatogênese , Testículo/patologia , Animais , Bluetongue/patologia , Bluetongue/virologia , Endotélio Vascular/metabolismo , Endotélio Vascular/virologia , Infertilidade Masculina/patologia , Masculino , Ovinos , Doenças dos Ovinos/patologia , Testículo/metabolismo , Testículo/virologia , Testosterona/análise , Virulência , Replicação Viral
16.
Proc Natl Acad Sci U S A ; 113(41): E6238-E6247, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671646

RESUMO

Arboviruses cause acute diseases that increasingly affect global health. We used bluetongue virus (BTV) and its natural sheep host to reveal a previously uncharacterized mechanism used by an arbovirus to manipulate host immunity. Our study shows that BTV, similarly to other antigens delivered through the skin, is transported rapidly via the lymph to the peripheral lymph nodes. Here, BTV infects and disrupts follicular dendritic cells, hindering B-cell division in germinal centers, which results in a delayed production of high affinity and virus neutralizing antibodies. Moreover, the humoral immune response to a second antigen is also hampered in BTV-infected animals. Thus, an arbovirus can evade the host antiviral response by inducing an acute immunosuppression. Although transient, this immunosuppression occurs at the critical early stages of infection when a delayed host humoral immune response likely affects virus systemic dissemination and the clinical outcome of disease.


Assuntos
Doenças dos Animais/imunologia , Células Dendríticas Foliculares/imunologia , Interações Hospedeiro-Patógeno/imunologia , Tolerância Imunológica , Viroses/veterinária , Vírus/imunologia , Doenças dos Animais/virologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Bluetongue/imunologia , Bluetongue/virologia , Vírus Bluetongue/genética , Vírus Bluetongue/imunologia , Células Dendríticas Foliculares/metabolismo , Células Endoteliais/virologia , Regulação Viral da Expressão Gênica , Imuno-Histoquímica , Linfonodos/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Ovinos , Células Estromais , Viremia/imunologia , Virulência , Vírus/genética
17.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539443

RESUMO

Akabane virus (AKAV) and Schmallenberg virus (SBV) are members of the genus Orthobunyavirus, which are transmitted by arthropod vectors with a broad cellular tropism in vitro as well as in vivo Both AKAV and SBV cause arthrogryposis-hydranencephaly syndrome in ruminants. The main cellular receptor and attachment factor for entry of these orthobunyaviruses are unknown. Here, we found that AKAV and SBV infections were inhibited by the addition of heparin or enzymatic removal of cell surface heparan sulfates. To confirm this finding, we prepared heparan sulfate proteoglycan (HSPG)-knockout (KO) cells by using a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system and measured the quantities of binding of these viruses to cell surfaces. We observed a substantial reduction in AKAV and SBV binding to cells, limiting the infections by these viruses. These data demonstrate that HSPGs are important cellular attachment factors for AKAV and SBV, at least in vitro, to promote virus replication in susceptible cells.IMPORTANCE AKAV and SBV are the etiological agents of arthrogryposis-hydranencephaly syndrome in ruminants, which causes considerable economic losses in the livestock industry. Here, we identified heparan sulfate proteoglycan as a major cellular attachment factor for the entry of AKAV and SBV. Moreover, we found that heparin is a strong inhibitor of AKAV and SBV infections. Revealing the molecular mechanisms of virus-host interactions is critical in order to understand virus biology and develop novel live attenuated vaccines.


Assuntos
Proteoglicanas de Heparan Sulfato/metabolismo , Orthobunyavirus/fisiologia , Receptores Virais/metabolismo , Ligação Viral , Animais , Linhagem Celular , Cricetinae , Humanos
18.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795408

RESUMO

Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE: Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family.


Assuntos
Nucléolo Celular/virologia , Células Ependimogliais/virologia , Interações Hospedeiro-Patógeno , Orthobunyavirus/patogenicidade , RNA Polimerase II/química , Proteínas não Estruturais Virais/química , Animais , Linhagem Celular Transformada , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Plexo Corióideo/citologia , Plexo Corióideo/metabolismo , Plexo Corióideo/virologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Células Ependimogliais/metabolismo , Células Ependimogliais/ultraestrutura , Regulação da Expressão Gênica , Células HeLa , Humanos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteólise , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Ovinos , Transdução de Sinais , Transcrição Gênica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
19.
Lancet ; 388(10043): 498-503, 2016 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-27209148

RESUMO

BACKGROUND: There are thousands of survivors of the 2014 Ebola outbreak in west Africa. Ebola virus can persist in survivors for months in immune-privileged sites; however, viral relapse causing life-threatening and potentially transmissible disease has not been described. We report a case of late relapse in a patient who had been treated for severe Ebola virus disease with high viral load (peak cycle threshold value 13.2). METHODS: A 39-year-old female nurse from Scotland, who had assisted the humanitarian effort in Sierra Leone, had received intensive supportive treatment and experimental antiviral therapies, and had been discharged with undetectable Ebola virus RNA in peripheral blood. The patient was readmitted to hospital 9 months after discharge with symptoms of acute meningitis, and was found to have Ebola virus in cerebrospinal fluid (CSF). She was treated with supportive therapy and experimental antiviral drug GS-5734 (Gilead Sciences, San Francisco, Foster City, CA, USA). We monitored Ebola virus RNA in CSF and plasma, and sequenced the viral genome using an unbiased metagenomic approach. FINDINGS: On admission, reverse transcriptase PCR identified Ebola virus RNA at a higher level in CSF (cycle threshold value 23.7) than plasma (31.3); infectious virus was only recovered from CSF. The patient developed progressive meningoencephalitis with cranial neuropathies and radiculopathy. Clinical recovery was associated with addition of high-dose corticosteroids during GS-5734 treatment. CSF Ebola virus RNA slowly declined and was undetectable following 14 days of treatment with GS-5734. Sequencing of plasma and CSF viral genome revealed only two non-coding changes compared with the original infecting virus. INTERPRETATION: Our report shows that previously unanticipated, late, severe relapses of Ebola virus can occur, in this case in the CNS. This finding fundamentally redefines what is known about the natural history of Ebola virus infection. Vigilance should be maintained in the thousands of Ebola survivors for cases of relapsed infection. The potential for these cases to initiate new transmission chains is a serious public health concern. FUNDING: Royal Free London NHS Foundation Trust.


Assuntos
Alanina/análogos & derivados , Antivirais/uso terapêutico , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/diagnóstico , Meningoencefalite/diagnóstico , Meningoencefalite/virologia , Ribonucleotídeos/uso terapêutico , Carga Viral/efeitos dos fármacos , Doença Aguda , Monofosfato de Adenosina/análogos & derivados , Adulto , Alanina/uso terapêutico , Doenças dos Nervos Cranianos/virologia , Surtos de Doenças , Drogas em Investigação/uso terapêutico , Ebolavirus/genética , Feminino , Genoma Viral , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Meningoencefalite/complicações , Meningoencefalite/tratamento farmacológico , Enfermeiras e Enfermeiros , RNA Viral/sangue , RNA Viral/líquido cefalorraquidiano , RNA Viral/isolamento & purificação , Radiculopatia/virologia , Recidiva , Escócia , Serra Leoa
20.
Proc Biol Sci ; 284(1864)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021180

RESUMO

Spatio-temporal patterns of the spread of infectious diseases are commonly driven by environmental and ecological factors. This is particularly true for vector-borne diseases because vector populations can be strongly affected by host distribution as well as by climatic and landscape variables. Here, we aim to identify environmental drivers for bluetongue virus (BTV), the causative agent of a major vector-borne disease of ruminants that has emerged multiple times in Europe in recent decades. In order to determine the importance of climatic, landscape and host-related factors affecting BTV diffusion across Europe, we fitted different phylogeographic models to a dataset of 113 time-stamped and geo-referenced BTV genomes, representing multiple strains and serotypes. Diffusion models using continuous space revealed that terrestrial habitat below 300 m altitude, wind direction and higher livestock densities were associated with faster BTV movement. Results of discrete phylogeographic analysis involving generalized linear models broadly supported these findings, but varied considerably with the level of spatial partitioning. Contrary to common perception, we found no evidence for average temperature having a positive effect on BTV diffusion, though both methodological and biological reasons could be responsible for this result. Our study provides important insights into the drivers of BTV transmission at the landscape scale that could inform predictive models of viral spread and have implications for designing control strategies.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/epidemiologia , Clima , Ecossistema , Interações Hospedeiro-Patógeno , Ruminantes , Animais , Europa (Continente)/epidemiologia , Modelos Genéticos , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA