Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139295

RESUMO

This review will provide an overview of what is currently known about mechanisms linking poor glycaemic control with increased thrombotic risk. The leading causes of death in people with diabetes are strokes and cardiovascular disease. Significant morbidity is associated with an increased risk of thrombosis, resulting in myocardial infarction, ischaemic stroke, and peripheral vascular disease, along with the sequelae of these events, including loss of functional ability, heart failure, and amputations. While the increased platelet activity, pro-coagulability, and endothelial dysfunction directly impact this risk, the molecular mechanisms linking poor glycaemic control with increased thrombotic risk remain unclear. This review highlights the complex mechanisms underlying thrombosis prevalence in individuals with diabetes and hyperglycaemia. Post-translational modifications, such as O-GlcNAcylation, play a crucial role in controlling protein function in diabetes. However, the role of O-GlcNAcylation remains poorly understood due to its intricate regulation and the potential involvement of multiple variables. Further research is needed to determine the precise impact of O-GlcNAcylation on specific disease processes.


Assuntos
Isquemia Encefálica , Diabetes Mellitus , Hiperglicemia , Infarto do Miocárdio , Acidente Vascular Cerebral , Trombose , Humanos , Isquemia Encefálica/complicações , Acidente Vascular Cerebral/etiologia , Trombose/complicações , Infarto do Miocárdio/complicações , Hiperglicemia/complicações
2.
Clin Sci (Lond) ; 135(13): 1563-1590, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34231841

RESUMO

Despite obesity and diabetes markedly increasing the risk of developing cardiovascular diseases, the molecular and cellular mechanisms that underlie this association remain poorly characterised. In the last 20 years it has become apparent that chronic, low-grade inflammation in obese adipose tissue may contribute to the risk of developing insulin resistance and type 2 diabetes. Furthermore, increased vascular pro-inflammatory signalling is a key event in the development of cardiovascular diseases. Overnutrition exacerbates pro-inflammatory signalling in vascular and adipose tissues, with several mechanisms proposed to mediate this. In this article, we review the molecular and cellular mechanisms by which nutrients are proposed to regulate pro-inflammatory signalling in adipose and vascular tissues. In addition, we examine the potential therapeutic opportunities that these mechanisms provide for suppression of inappropriate inflammation in obesity and vascular disease.


Assuntos
Tecido Adiposo/metabolismo , Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Metabolismo Energético , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Estado Nutricional , Obesidade/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/imunologia , Tecido Adiposo/fisiopatologia , Animais , Anti-Inflamatórios/uso terapêutico , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/imunologia , Sistema Cardiovascular/fisiopatologia , Metabolismo Energético/efeitos dos fármacos , Humanos , Hipoglicemiantes/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/fisiopatologia , Mediadores da Inflamação/antagonistas & inibidores , Obesidade/tratamento farmacológico , Obesidade/imunologia , Obesidade/fisiopatologia , Estresse Oxidativo , Transdução de Sinais
3.
Pharmacol Res ; 165: 105467, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33515704

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally. While the major focus of pharmacological and non-pharmacological interventions has been on targeting disease pathophysiology and limiting predisposing factors, our understanding of the cellular and molecular mechanisms underlying the pathogenesis of CVDs remains incomplete. One mechanism that has recently emerged is protein O-GlcNAcylation. This is a dynamic, site-specific reversible post-translational modification of serine and threonine residues on target proteins and is controlled by two enzymes: O-linked ß-N-acetylglucosamine transferase (OGT) and O-linked ß-N-acetylglucosaminidase (OGA). Protein O-GlcNAcylation alters the cellular functions of these target proteins which play vital roles in pathways that modulate vascular homeostasis and cardiac function. Through this review, we aim to give insights on the role of protein O-GlcNAcylation in cardiovascular diseases and identify potential therapeutic targets in this pathway for development of more effective medicines to improve patient outcomes.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Doenças Cardiovasculares/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Inibidores Enzimáticos/administração & dosagem , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Acetilglucosamina/antagonistas & inibidores , Acetilglucosamina/metabolismo , Acetilglucosaminidase/antagonistas & inibidores , Acetilglucosaminidase/metabolismo , Acilação/efeitos dos fármacos , Acilação/fisiologia , Animais , Antígenos de Neoplasias/metabolismo , Doenças Cardiovasculares/metabolismo , Glicosilação/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Humanos , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/metabolismo
4.
Nutr Metab Cardiovasc Dis ; 31(5): 1349-1356, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812732

RESUMO

AIM: Coronary artery bypass graft (CABG) using autologous saphenous vein continues to be a gold standard procedure to restore the supply of oxygen-rich blood to the heart muscles in coronary artery disease (CAD) patients with or without type 2 diabetes mellitus (T2DM). However, CAD patients with T2DM are at higher risk of graft failure. While failure rates have been reduced through improvements in procedure-related factors, much less is known about the molecular and cellular mechanisms by which T2DM initiates vein graft failure. This review gives novel insights into these cellular and molecular mechanisms and identifies potential therapeutic targets for development of new medicines to improve vein graft patency. DATA SYNTHESIS: One important cellular process that has been implicated in the pathogenesis of T2DM is protein O-GlcNAcylation, a dynamic, reversible post-translational modification of serine and threonine residues on target proteins that is controlled by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Protein O-GlcNAcylation impacts a range of cellular processes, including trafficking, metabolism, inflammation and cytoskeletal organisation. Altered O-GlcNAcylation homeostasis have, therefore, been linked to a range of human pathologies with a metabolic component, including T2DM. CONCLUSION: We propose that protein O-GlcNAcylation alters vascular smooth muscle and endothelial cell function through modification of specific protein targets which contribute to the vascular re-modelling responsible for saphenous vein graft failure in T2DM.


Assuntos
Glicemia/metabolismo , Ponte de Artéria Coronária , Doença da Artéria Coronariana/cirurgia , Diabetes Mellitus Tipo 2/complicações , Oclusão de Enxerto Vascular/etiologia , Processamento de Proteína Pós-Traducional , Veia Safena/transplante , Animais , Biomarcadores/sangue , Ponte de Artéria Coronária/efeitos adversos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicosilação , Oclusão de Enxerto Vascular/metabolismo , Oclusão de Enxerto Vascular/patologia , Oclusão de Enxerto Vascular/prevenção & controle , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Medição de Risco , Fatores de Risco , Veia Safena/metabolismo , Veia Safena/patologia , Falha de Tratamento , Remodelação Vascular
5.
Mol Cell ; 50(3): 394-406, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23603120

RESUMO

Tumor cells undergo changes in metabolism to meet their energetic and anabolic needs. It is conceivable that mechanisms exist to sense these changes and link them to pathways that eradicate cells primed for cancer development. We report that the tumor suppressor p53 activates a cell death priming mechanism that senses extracellular adenosine. Adenosine, the backbone of ATP, accumulates under conditions of cellular stress or altered metabolism. We show that its receptor, A2B, is upregulated by p53. A2B expression has little effect on cell viability, but ligand engagement activates a caspase- and Puma-dependent apoptotic response involving downregulation of antiapoptotic Bcl-2 proteins. Stimulation of A2B also significantly enhances cell death mediated by p53 and upon accumulation of endogenous adenosine following chemotherapeutic drug treatment and exposure to hypoxia. Since extracellular adenosine also accumulates within many solid tumors, this distinct p53 function links programmed cell death to both a cancer- and therapy-associated metabolic change.


Assuntos
Adenosina/genética , Adenosina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caspases/genética , Caspases/metabolismo , Morte Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Regulação para Baixo/genética , Células HCT116 , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/metabolismo , Regulação para Cima/genética
6.
Ann Rheum Dis ; 78(7): 929-933, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31018959

RESUMO

OBJECTIVE: We investigated whether the normal human spinal enthesis contained resident myeloid cell populations, capable of producing pivotal proinflammatory cytokines including tumour necrosis factor (TNF) and interleukin (IL)-23 and determined whether these could be modified by PDE4 inhibition. METHODS: Normal human enthesis soft tissue (ST) and adjacent perientheseal bone (PEB) (n=15) were evaluated using immunohistochemistry (IHC), digested for myeloid cell phenotyping, sorted and stimulated with different adjuvants (lipopolysaccharide and mannan). Stimulated enthesis fractions were analysed for inducible production of spondyloarthropathy disease-relevant mediators (IL-23 full protein, TNF, IL-1ß and CCL20). Myeloid populations were also compared with matched blood populations for further mRNA analysis and the effect of PDE4 inhibition was assessed. RESULTS: A myeloid cell population (CD45+ HLADR+ CD14+ CD11c+) phenotype was isolated from both the ST and adjacent PEB and termed 'CD14+ myeloid cells' with tissue localisation confirmed by CD14+ IHC. The CD14- fraction contained a CD123+ HLADR+ CD11c- cell population (plasmacytoid dendritic cells). The CD14+ population was the dominant entheseal producer of IL-23, IL-1ß, TNF and CCL20. IL-23 and TNF from the CD14+ population could be downregulated by a PDE4I and other agents (histamine and 8-Bromo-cAMP) which elevate cAMP. Entheseal CD14+ cells had a broadly similar gene expression profile to the corresponding CD14+ population from matched blood but showed significantly lower CCR2 gene expression. CONCLUSIONS: The human enthesis contains a CD14+ myeloid population that produces most of the inducible IL-23, IL-1ß, TNF and CCL20. This population has similar gene expression profile to the matched blood CD14+ population.


Assuntos
Células do Tecido Conjuntivo/metabolismo , Interleucina-23/biossíntese , Células Mieloides/metabolismo , Quimiocina CCL20/biossíntese , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Células Dendríticas/metabolismo , Humanos , Imuno-Histoquímica , Interleucina-1beta/biossíntese , Receptores de Lipopolissacarídeos/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
7.
Biochem Soc Trans ; 47(4): 1143-1156, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31341036

RESUMO

Inflammation has been highlighted as a key factor in pulmonary arterial hypertension (PAH) development, particularly interleukin-6 (IL-6). IL-6 activates JAK-STAT signalling to induce transcription of pro-inflammatory and pro-angiogenic genes, enabling PAH progression, as well as the transcription of suppressor of cytokine signalling 3 (SOCS3) which limits IL-6 signalling. Current PAH therapies include prostanoid drugs which induce vasodilation via stimulating intracellular 3',5'-cyclic adenosine monophosphate (cAMP) levels. cAMP can also inhibit IL-6-mediated endothelial dysfunction via the induction of SOCS3. Thus, we propose that an important mechanism by which cAMP-mobilising prostanoid drugs limit PAH is by inhibiting IL-6-mediated pulmonary inflammation and remodelling via SOCS3 inhibition of IL-6 signalling. Further clarification may result in effective strategies with which to target the IL-6/JAK-STAT signalling pathway in PAH.


Assuntos
Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Prostaglandinas/farmacologia , Hipertensão Arterial Pulmonar/terapia , Transdução de Sinais/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
8.
Pharmacol Res ; 128: 88-100, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29037480

RESUMO

Exaggerated Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling is key to the pathogenesis of pro-inflammatory disorders, such as rheumatoid arthritis and cardiovascular diseases. Mutational activation of JAKs is also responsible for several haematological malignancies, including myeloproliferative neoplasms and acute lymphoblastic leukaemia. Accumulating evidence links adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), an energy sensor and regulator of organismal and cellular metabolism, with the suppression of immune and inflammatory processes. Recent studies have shown that activation of AMPK can limit JAK-STAT-dependent signalling pathways via several mechanisms. These novel findings support AMPK activation as a strategy for management of an array of disorders characterised by hyper-activation of the JAK-STAT pathway. This review discusses the pivotal role of JAK-STAT signalling in a range of disorders and how both established clinically used and novel AMPK activators might be used to treat these conditions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais
9.
Int J Mol Sci ; 19(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563079

RESUMO

Protein kinase B (Akt) is a key enzyme in the insulin signalling cascade, required for insulin-stimulated NO production in endothelial cells (ECs). Previous studies have suggested that AMP-activated protein kinase (AMPK) activation stimulates NO synthesis and enhances insulin-stimulated Akt activation, yet these studies have largely used indirect activators of AMPK. The effects of the allosteric AMPK activator A769662 on insulin signalling and endothelial function was therefore examined in cultured human macrovascular ECs. Surprisingly, A769662 inhibited insulin-stimulated NO synthesis and Akt phosphorylation in human ECs from umbilical veins (HUVECs) and aorta (HAECs). In contrast, the AMPK activators compound 991 and AICAR had no substantial inhibitory effect on insulin-stimulated Akt phosphorylation in ECs. Inhibition of AMPK with SBI-0206965 had no effect on the inhibition of insulin-stimulated Akt phosphorylation by A769662, suggesting the inhibitory action of A769662 is AMPK-independent. A769662 decreased IGF1-stimulated Akt phosphorylation yet had no effect on VEGF-stimulated Akt signalling in HUVECs, suggesting that A769662 attenuates early insulin/IGF1 signalling. The effects of A769662 on insulin-stimulated Akt phosphorylation were specific to human ECs, as no effect was observed in the human cancer cell lines HepG2 or HeLa, as well as in mouse embryonic fibroblasts (MEFs). A769662 inhibited insulin-stimulated Erk1/2 phosphorylation in HAECs and MEFs, an effect that was independent of AMPK in MEFs. Therefore, despite being a potent AMPK activator, A769662 has effects unlikely to be mediated by AMPK in human macrovascular ECs that reduce insulin sensitivity and eNOS activation.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Aorta/enzimologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pironas/farmacologia , Tiofenos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Aorta/citologia , Compostos de Bifenilo , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Biochem J ; 473(24): 4681-4697, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27784766

RESUMO

The key metabolic regulator, AMP-activated protein kinase (AMPK), is reported to be down-regulated in metabolic disorders, but the mechanisms are poorly characterised. Recent studies have identified phosphorylation of the AMPKα1/α2 catalytic subunit isoforms at Ser487/491, respectively, as an inhibitory regulation mechanism. Vascular endothelial growth factor (VEGF) stimulates AMPK and protein kinase B (Akt) in cultured human endothelial cells. As Akt has been demonstrated to be an AMPKα1 Ser487 kinase, the effect of VEGF on inhibitory AMPK phosphorylation in cultured primary human endothelial cells was examined. Stimulation of endothelial cells with VEGF rapidly increased AMPKα1 Ser487 phosphorylation in an Akt-independent manner, without altering AMPKα2 Ser491 phosphorylation. In contrast, VEGF-stimulated AMPKα1 Ser487 phosphorylation was sensitive to inhibitors of protein kinase C (PKC) and PKC activation using phorbol esters or overexpression of PKC-stimulated AMPKα1 Ser487 phosphorylation. Purified PKC and Akt both phosphorylated AMPKα1 Ser487 in vitro with similar efficiency. PKC activation was associated with reduced AMPK activity, as inhibition of PKC increased AMPK activity and phorbol esters inhibited AMPK, an effect lost in cells expressing mutant AMPKα1 Ser487Ala. Consistent with a pathophysiological role for this modification, AMPKα1 Ser487 phosphorylation was inversely correlated with insulin sensitivity in human muscle. These data indicate a novel regulatory role of PKC to inhibit AMPKα1 in human cells. As PKC activation is associated with insulin resistance and obesity, PKC may underlie the reduced AMPK activity reported in response to overnutrition in insulin-resistant metabolic and vascular tissues.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Quinase C/metabolismo , Linhagem Celular , Células HEK293 , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
11.
Circulation ; 128(15): 1612-22, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23969695

RESUMO

BACKGROUND: The sphingosine-1-phosphate receptor 1 (S1PR1) and ß1-adrenergic receptor (ß1AR) are G-protein-coupled receptors expressed in the heart. These 2 receptors have opposing actions on adenylyl cyclase because of differential G-protein coupling. Importantly, both of these receptors can be regulated by the actions of G-protein-coupled receptor kinase-2, which triggers desensitization and downregulation processes. Although classic signaling paradigms suggest that simultaneous activation of ß1ARs and S1PR1s in a myocyte would simply result in opposing action on cAMP production, in this report we have uncovered a direct interaction between these 2 receptors, with regulatory involvement of G-protein-coupled receptor kinase-2. METHODS AND RESULTS: In HEK (human embryonic kidney) 293 cells overexpressing both ß1AR and S1PR1, we demonstrated that ß1AR downregulation can occur after stimulation with sphingosine-1-phosphate (an S1PR1 agonist), whereas S1PR1 downregulation can be triggered by isoproterenol (a ß-adrenergic receptor agonist) treatment. This cross talk between these 2 distinct G-protein-coupled receptors appears to have physiological significance, because they interact and show reciprocal regulation in mouse hearts undergoing chronic ß-adrenergic receptor stimulation and in a rat model of postischemic heart failure. CONCLUSIONS: We demonstrate that restoration of cardiac plasma membrane levels of S1PR1 produces beneficial effects that counterbalance the deleterious ß1AR overstimulation in heart failure.


Assuntos
Terapia Genética/métodos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Receptores Adrenérgicos beta 1/genética , Receptores de Lisoesfingolipídeo/genética , Animais , Cardiomegalia/fisiopatologia , Cardiomegalia/terapia , Modelos Animais de Doenças , Progressão da Doença , Regulação para Baixo/fisiologia , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos Cardíacos/citologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Ratos , Ratos Endogâmicos WKY , Receptor Cross-Talk/fisiologia , Receptores Adrenérgicos beta 1/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato
12.
Biochem Soc Trans ; 42(2): 284-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646232

RESUMO

Caveolae are curved lipid raft regions rich in cholesterol and sphingolipids found abundantly in vascular endothelial cells, adipocytes, smooth muscle cells and fibroblasts. They are multifunctional organelles with roles in clathrin-independent endocytosis, cholesterol transport, mechanosensing and signal transduction. Caveolae provide an environment where multiple receptor signalling components are sequestered, clustered and compartmentalized for efficient signal transduction. Many of these receptors, including cytokine signal transducer gp130 (glycoprotein 130), are mediators of chronic inflammation during atherogenesis. Subsequently, disruption of these organelles is associated with a broad range of disease states including cardiovascular disease and cancer. Cavin-1 is an essential peripheral component of caveolae that stabilizes caveolin-1, the main structural/integral membrane protein of caveolae. Caveolin-1 is an essential regulator of eNOS (endothelial nitric oxide synthase) and its disruption leads to endothelial dysfunction which initiates a range of cardiovascular and pulmonary disorders. Although dysfunctional cytokine signalling is also a hallmark of cardiovascular disease, knowledge of caveolae-dependent cytokine signalling is lacking as is the role of cavin-1 independent of caveolae. The present review introduces caveolae, their structural components, the caveolins and cavins, their regulation by cAMP, and their potential role in cardiovascular disease.


Assuntos
Doenças Cardiovasculares/metabolismo , Cavéolas/metabolismo , Caveolina 1/metabolismo , Animais , AMP Cíclico/metabolismo , Humanos , Transdução de Sinais/fisiologia
13.
PLoS One ; 18(2): e0280594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724150

RESUMO

Microplastics (MPs) are ubiquitous in the environment, in the human food chain, and have been recently detected in blood and lung tissues. To undertake a pilot analysis of MP contamination in human vein tissue samples with respect to their presence (if any), levels, and characteristics of any particles identified. This study analysed digested human saphenous vein tissue samples (n = 5) using µFTIR spectroscopy (size limitation of 5 µm) to detect and characterise any MPs present. In total, 20 MP particles consisting of five MP polymer types were identified within 4 of the 5 vein tissue samples with an unadjusted average of 29.28 ± 34.88 MP/g of tissue (expressed as 14.99 ± 17.18 MP/g after background subtraction adjustments). Of the MPs detected in vein samples, five polymer types were identified, of irregular shape (90%), with alkyd resin (45%), poly (vinyl propionate/acetate, PVAc (20%) and nylon-ethylene-vinyl acetate, nylon-EVA, tie layer (20%) the most abundant. While the MP levels within tissue samples were not significantly different than those identified within procedural blanks (which represent airborne contamination at time of sampling), they were comprised of different plastic polymer types. The blanks comprised n = 13 MP particles of four MP polymer types with the most abundant being polytetrafluoroethylene (PTFE), then polypropylene (PP), polyethylene terephthalate (PET) and polyfumaronitrile:styrene (FNS), with a mean ± SD of 10.4 ± 9.21, p = 0.293. This study reports the highest level of contamination control and reports unadjusted values alongside different contamination adjustment techniques. This is the first evidence of MP contamination of human vascular tissues. These results support the phenomenon of transport of MPs within human tissues, specifically blood vessels, and this characterisation of types and levels can now inform realistic conditions for laboratory exposure experiments, with the aim of determining vascular health impacts.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/análise , Plásticos/análise , Projetos Piloto , Nylons , Veia Safena , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polímeros
14.
Biochem Soc Trans ; 40(1): 1-5, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22260656

RESUMO

Chronic inflammatory diseases, such as atherosclerosis, are a major cause of death and disability in the developed world. In this respect, although cholesterol obviously plays a predominant role in atherosclerosis, targeting inflammation at lesion sites may be just as important. Indeed, elevated IL-6 (interleukin 6) levels are as strongly associated with coronary heart disease as increased cholesterol. We have been investigating novel cAMP-regulated pathways that combat the action of pro-inflammatory cytokines, such as IL-6 and leptin, in the VECs (vascular endothelial cells) of the circulatory system. In this respect, we have begun to unravel new molecular mechanisms by which the cAMP/Epac1 (exchange protein directly activated by cAMP 1)/Rap1 pathway can initiate a rigorous programme of protective anti-inflammatory responses in VECs. Central to this is the coupling of cAMP elevation to the mobilization of two C/EBP (CCAAT/enhancer-binding protein) family transcription factors, resulting in the induction of the SOCS3 (suppressor of cytokine signalling 3) gene, which attenuates pro-inflammatory cytokine signalling in VECs. These novel 'protective' mechanisms of cAMP action will inform the development of the next generation of pharmaceuticals specifically designed to combat endothelial inflammation associated with cardiovascular disease.


Assuntos
AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transcrição Gênica , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Células Cultivadas , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
15.
Biochem Soc Trans ; 40(1): 215-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22260693

RESUMO

The anti-inflammatory effects of the prototypical second messenger cAMP have been extensively documented in multiple cell types. One mechanism by which these effects are achieved is via Epac1 (exchange protein directly activated by cAMP 1)-dependent induction of SOCS-3 (suppressor of cytokine signalling 3), which binds and inhibits specific class I cytokine receptors. One important aspect of SOCS-3 functionality is its role as the specificity determinant within an E3 ubiquitin ligase complex which targets cellular substrates for polyubiquitylation and proteasomal degradation. In the present review, we describe key inhibitory processes that serve to reduce cytokine receptor signalling, focusing primarily on SOCS protein function and regulation. We also outline a strategy we have developed to identify novel ubiquitylated substrates for the Epac1-inducible SOCS-3 E3 ubiquitin ligase complex following purification of the ubiquitinome. It is anticipated that identifying substrates for the Epac1-regulated SOCS-3 E3 ubiquitin ligase, and assessment of their functional significance, may pinpoint new sites for therapeutic intervention that would achieve therapeutic efficacy of cAMP-elevating drugs while minimizing the adverse effects usually associated with these agents.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/química , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação
16.
Cells ; 11(4)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35203353

RESUMO

Unresolved hyperglycaemia, a hallmark of type 2 diabetes mellitus (T2DM), is a well characterised manifestation of altered fuel homeostasis and our understanding of its role in the pathologic activation of the inflammatory system continues to grow. Metabolic disorders like T2DM trigger changes in the regulation of key cellular processes such as cell trafficking and proliferation, and manifest as chronic inflammatory disorders with severe long-term consequences. Activation of inflammatory pathways has recently emerged as a critical link between T2DM and inflammation. A substantial body of evidence has suggested that this is due in part to increased flux through the hexosamine biosynthetic pathway (HBP). The HBP, a unique nutrient-sensing metabolic pathway, produces the activated amino sugar UDP-GlcNAc which is a critical substrate for protein O-GlcNAcylation, a dynamic, reversible post-translational glycosylation of serine and threonine residues in target proteins. Protein O-GlcNAcylation impacts a range of cellular processes, including inflammation, metabolism, trafficking, and cytoskeletal organisation. As increased HBP flux culminates in increased protein O-GlcNAcylation, we propose that targeting O-GlcNAcylation may be a viable therapeutic strategy for the prevention and management of glucose-dependent pathologies with inflammatory components.


Assuntos
Diabetes Mellitus Tipo 2 , Glicosilação , Hexosaminas/metabolismo , Humanos , Inflamação , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
17.
ScientificWorldJournal ; 11: 320-39, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21298223

RESUMO

The production of adenosine represents a critical endogenous mechanism for regulating immune and inflammatory responses during conditions of stress, injury, or infection. Adenosine exerts predominantly protective effects through activation of four 7-transmembrane receptor subtypes termed A1, A2A, A2B, and A3, of which the A2A adenosine receptor (A2AAR) is recognised as a major mediator of anti-inflammatory responses. The A2AAR is widely expressed on cells of the immune system and numerous in vitro studies have identified its role in suppressing key stages of the inflammatory process, including leukocyte recruitment, phagocytosis, cytokine production, and immune cell proliferation. The majority of actions produced by A2AAR activation appear to be mediated by cAMP, but downstream events have not yet been well characterised. In this article, we review the current evidence for the anti-inflammatory effects of the A2AAR in different cell types and discuss possible molecular mechanisms mediating these effects, including the potential for generalised suppression of inflammatory gene expression through inhibition of the NF-kB and JAK/STAT proinflammatory signalling pathways. We also evaluate findings from in vivo studies investigating the role of the A2AAR in different tissues in animal models of inflammatory disease and briefly discuss the potential for development of selective A2AAR agonists for use in the clinic to treat specific inflammatory conditions.


Assuntos
Anti-Inflamatórios/metabolismo , Imunossupressores/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Humanos , Janus Quinases/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Fatores de Transcrição STAT/metabolismo
18.
Mol Pharmacol ; 77(6): 968-78, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20185553

RESUMO

Here we demonstrate that overexpression of the human A(2A) adenosine receptor (A(2A)AR) in vascular endothelial cells confers an ability of interferon-alpha and a soluble IL-6 receptor/IL-6 (sIL-6R alpha/IL-6) trans-signaling complex to trigger the down-regulation of signal transducer and activator of transcription (STAT) proteins. It is noteworthy that STAT down-regulation could be reversed by coincubation with A(2A)AR-selective inverse agonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385) but not adenosine deaminase, suggesting that constitutive activation of the receptor was responsible for the effect. Moreover, STAT down-regulation was selectively abolished by proteasome inhibitor N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132), whereas lysosome inhibitor chloroquine was without effect. Down-regulation required Janus kinase (JAK) activity and a Tyr705-->Phe-mutated STAT3 was resistant to the phenomenon, suggesting that JAK-mediated phosphorylation of this residue is required. Consistent with this hypothesis, treatment of A(2A)AR-overexpressing cells with sIL-6R alpha/IL-6 triggered the accumulation of polyubiquitylated wild-type but not Tyr705-->Phe-mutated STAT3. Support for a functional role of this process was provided by the observation that A(2A)AR overexpression attenuated the JAK/STAT-dependent up-regulation of vascular endothelial growth factor receptor-2 by sIL-6R alpha/IL-6. Consistent with a role for endogenous A(2A)ARs in regulating STAT protein levels, prolonged exposure of endogenous A(2A)ARs in endothelial cells with ZM241385 in vitro triggered the up-regulation of STAT3, whereas deletion of the A(2A)AR in vivo potentiated STAT1 expression and phosphorylation. Together, these experiments support a model whereby the A(2A)AR can prime JAK-phosphorylated STATs for polyubiquitylation and proteasomal degradation and represents a new mechanism by which an anti-inflammatory seven-transmembrane receptor can negatively regulate JAK/STAT signaling.


Assuntos
Citocinas/metabolismo , Receptores A2 de Adenosina/metabolismo , Fatores de Transcrição STAT/fisiologia , Animais , Western Blotting , Células Cultivadas , Regulação para Baixo , Humanos , Hidrólise , Imunoprecipitação , Camundongos , Camundongos Knockout , Fosforilação , Triazinas/farmacologia , Triazóis/farmacologia , Ubiquitinação
19.
Methods Mol Biol ; 2169: 105-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32548823

RESUMO

The ability of inducible regulator suppressor of cytokine signaling 3 (SOCS3) to inhibit Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling requires interaction with specific cytokine receptors, JAKs, and components of the cellular ubiquitylation machinery. However, it is now clear that additional protein interactions are essential for effective inhibition of JAK-STAT signaling that have also identified new roles for SOCS3. For example, we have demonstrated that SOCS3 interaction with cavin-1, a core component of caveolae essential for their formation, is required for effective inhibition of interleukin (IL)-6 signaling and maintenance of cellular levels of caveolae. This is achieved through cavin-1 interaction with a discrete motif within the SOCS3 SH2 domain. Here, we describe in detail three methods (coimmunoprecipitation; peptide pull-down; peptide array overlay) we have used to validate and characterize cavin-1/SOCS3 interactions in vitro.


Assuntos
Imunoprecipitação/métodos , Análise Serial de Proteínas/métodos , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Biotina/química , Cavéolas/metabolismo , Células HEK293 , Humanos , Janus Quinases/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética
20.
Cell Signal ; 20(3): 460-6, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17993258

RESUMO

Many of the effects of prototypical second messenger cyclic adenosine 3',5'-monophosphate (cAMP) on complex processes such as the regulation of fuel metabolism, spermatogenesis and steroidogenesis are mediated via changes in target gene transcription. A large body of research has defined members of the cAMP-response element binding (CREB) protein family as the principal mediators of positive changes in gene expression in response to cAMP following phosphorylation by cAMP-dependent protein kinase (PKA). However, persistent observations of cAMP-mediated induction of specific genes occurring via PKA-independent mechanisms have challenged the generality of the PKA-CREB pathway. In this review, we will discuss in detail both PKA-dependent and -independent mechanisms that have been proposed to explain how cAMP influences the activation status of multiple transcription factors, and how these influence critical biological processes whose defective regulation may lead to disease.


Assuntos
AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Sistemas do Segundo Mensageiro , Transcrição Gênica , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteína de Ligação a CREB/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Fosforilação , Serina/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA