Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EBioMedicine ; 91: 104567, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37062177

RESUMO

BACKGROUND: In preclinical models of Type 1 Diabetes (T1D) the integrity of the gut barrier (GB) is instrumental to avoid dysregulated crosstalk between the commensal microbiota and immune cells and to prevent autoimmunity. The GB is composed of the intestinal epithelial barrier (IEB) and of the mucus layer containing mucins and antimicrobial peptides (AMPs) that are crucial to maintain immune tolerance. In preclinical models of T1D the alterations of the GB primarily affect the mucus layer. In human T1D increased gut permeability and IEB damage have been demonstrated but the integrity of the mucus layer was never assessed. METHODS: We evaluated GB integrity by measuring serological markers of IEB damage (serological levels of zonulin) and bacterial translocation such as lipopolysaccharide binding protein (LBP) and myeloid differentiation protein 2 (MD2), and mRNA expression of tight junction proteins, mucins and AMPs in intestinal tissue of T1D patients and healthy controls (HC). Simultaneously, we performed immunological profiling on intestinal tissue and 16S rRNA analysis on the mucus-associated gut microbiota (MAGM). FINDINGS: Our data show a GB damage with mucus layer alterations and reduced mRNA expression of several mucins (MUC2, MUC12, MUC13, MUC15, MUC20, MUC21) and AMPs (HD4 and HD5) in T1D patients. Mucus layer alterations correlated with reduced relative abundance of short chain fatty acids (SCFA)-producing bacteria such as Bifidobacterium dentium, Clostridium butyricum and Roseburia intestinalis that regulate mucin expression and intestinal immune homeostasis. In T1D patients we also found intestinal immune dysregulation with higher percentages of effector T cells such as T helper (Th) 1, Th17 and TNF-α+ T cells. INTERPRETATION: Our data show that mucus layer alterations are present in T1D subjects and associated with dysbiosis and immune dysregulation. FUNDING: Research Grants from the Juvenile Diabetes Foundation (Grant 1-INO-2018-640-A-N to MF and 2-SRA-2019-680-S-B to JD) and from the Italian Ministry of Health (Grant RF19-12370721 to MF).


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Mucosa Intestinal/metabolismo , Disbiose/metabolismo , RNA Ribossômico 16S/metabolismo , Mucinas/metabolismo , Muco/metabolismo , RNA Mensageiro/metabolismo
2.
Front Immunol ; 12: 669787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335571

RESUMO

The hallmarks of inflammatory bowel disease are mucosal damage and ulceration, which are known to be high-risk conditions for the development of colorectal cancer. Recently, interleukin (IL)-33 and its receptor ST2 have emerged as critical modulators in inflammatory disorders. Even though several studies highlight the IL-33/ST2 pathway as a key factor in colitis, a detailed mode of action remains elusive. Therefore, we investigated the role of IL-33 during intestinal inflammation and its potential as a novel therapeutic target in colitis. Interestingly, the expression of IL-33, but not its receptor ST2, was significantly increased in biopsies from the inflamed colon of IBD patients compared to non-inflamed colonic tissue. Accordingly, in a mouse model of Dextran Sulfate Sodium (DSS) induced colitis, the secretion of IL-33 significantly accelerated in the colon. Induction of DSS colitis in ST2-/- mice displayed an aggravated colon pathology, which suggested a favorable role of the IL 33/ST2 pathway during colitis. Indeed, injecting rmIL-33 into mice suffering from acute DSS colitis, strongly abrogated epithelial damage, pro-inflammatory cytokine secretion, and loss of barrier integrity, while it induced a strong increase of Th2 associated cytokines (IL-13/IL-5) in the colon. This effect was accompanied by the accumulation of regulatory T cells (Tregs) and type 2 innate lymphoid cells (ILC2s) in the colon. Depletion of Foxp3+ Tregs during IL-33 treatment in DSS colitis ameliorated the positive effect on the intestinal pathology. Finally, IL-33 expanded ILC2s, which were adoptively transferred to DSS treated mice, significantly reduced colonic inflammation compared to DSS control mice. In summary, our results emphasize that the IL-33/ST2 pathway plays a crucial protective role in colitis by modulating ILC2 and Treg numbers.


Assuntos
Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Colite/prevenção & controle , Colo/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Interleucina-33/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Transferência Adotiva , Animais , Colite/induzido quimicamente , Colite/imunologia , Colite/metabolismo , Colo/imunologia , Colo/metabolismo , Colo/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
3.
Mucosal Immunol ; 14(4): 923-936, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33654214

RESUMO

A wide range of microbial pathogens is capable of entering the gastrointestinal tract, causing infectious diarrhea and colitis. A finely tuned balance between different cytokines is necessary to eradicate the microbial threat and to avoid infection complications. The current study identified IL-33 as a critical regulator of the immune response to the enteric pathogen Citrobacter rodentium. We observed that deficiency of the IL-33 signaling pathway attenuates bacterial-induced colitis. Conversely, boosting this pathway strongly aggravates the inflammatory response and makes the mice prone to systemic infection. Mechanistically, IL-33 mediates its detrimental effect by enhancing gut permeability and by limiting the induction of protective T helper 17 cells at the site of infection, thus impairing host defense mechanisms against the enteric pathogen. Importantly, IL-33-treated infected mice supplemented with IL-17A are able to resist the otherwise strong systemic spreading of the pathogen. These findings reveal a novel IL-33/IL-17A crosstalk that controls the pathogenesis of Citrobacter rodentium-driven infectious colitis. Manipulating the dynamics of cytokines may offer new therapeutic strategies to treat specific intestinal infections.


Assuntos
Colite/etiologia , Colite/metabolismo , Interleucina-33/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Transdução de Sinais , Células Th17/imunologia , Células Th17/metabolismo , Animais , Biomarcadores , Colite/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Infecções por Enterobacteriaceae/complicações , Infecções por Enterobacteriaceae/imunologia , Contagem de Linfócitos , Camundongos , Permeabilidade , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
5.
J Crohns Colitis ; 13(2): 218-229, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295779

RESUMO

BACKGROUND AND AIMS: Inflammatory bowel diseases [IBD] represent a challenging health issue with a complex aetiology involving genetic and environmental parameters. Although our understanding of the pathophysiology of IBD has improved, much remains to be explored. In this context, bioactive lipids, more specifically oxysterols, i.e. oxygenated derivatives of cholesterol, represent an interesting avenue to investigate. Indeed, oxysterols or their receptors are involved in inflammation and immune regulation. Therefore, we set out to study the oxysterome in IBD. METHODS: We used both high-performance liquid chromatograph/mass spectroscopy and molecular biology tools to quantify oxysterol levels and the expression of their metabolic enzymes in several models of murine colitis [both acute and chronic], as well as in colon biopsies from patients with Crohn's disease and ulcerative colitis. RESULTS: We found that the oxysterome is altered in IBD, in both acute and chronic murine models as well as in human IBD. Two of the oxysterols quantified, 4ß-hydroxycholesterol and 25-hydroxycholesterol, were consistently altered in all our models and therefore could be of interest in this context. Hence, we administered them to mice with colitis. While 25-hydroxycholesterol had no effect, 4ß-hydroxycholesterol worsened colon inflammation. CONCLUSIONS: Our study addresses the potential involvement of oxysterols in colitis and clearly points towards an active role as well as a clinical relevance for these bioactive lipids.


Assuntos
Colite Ulcerativa/metabolismo , Colite/metabolismo , Colo/metabolismo , Doença de Crohn/metabolismo , Hidroxicolesteróis/farmacologia , Oxisteróis/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Colite Ulcerativa/patologia , Colo/química , Colo/efeitos dos fármacos , Colo/patologia , Doença de Crohn/patologia , Modelos Animais de Doenças , Humanos , Fígado/química , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Oxisteróis/análise , Oxisteróis/sangue , Peroxidase/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
6.
Mucosal Immunol ; 12(4): 990-1003, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31165767

RESUMO

The composition of immune infiltrates strongly affects the prognosis of patients with colorectal cancer (CRC). Interleukin (IL)-33 and regulatory T cells (Tregs) in the tumor microenvironment have been separately implicated in CRC; however their contribution to intestinal carcinogenesis is still controversial. Here, we reveal that IL-33 signaling promotes CRC by changing the phenotype of Tregs. In mice with CRC, tumor-infiltrating Tregs preferentially upregulate IL-33 receptor (ST2), and IL-33/ST2 signaling positively correlates with tumor number and size. Transcriptomic and flow cytometry analyses demonstrate that ST2 expression induces a more activated and migratory phenotype in FOXP3+ Tregs, which favors their accumulation in the tumor environment. Consequently, genetic ablation of St2 reduces Treg infiltration and concomitantly enhances the frequencies of effector CD8+ T cells, thereby restraining CRC. Mechanistically, IL-33 curtails IL-17 production by FOXP3+ Tregs and inhibits Th17 differentiation. In humans, numbers of activated ST2-expressing Tregs are increased in blood and tumor lesions of CRC patients, suggesting a similar mode of regulation. Together, these data indicate a central role of IL-33/ST2 signaling in shaping an immunosuppressive environment during intestinal tumorigenesis. Blockade of this pathway may provide a strategy to modulate the composition of CRC immune infiltrates.


Assuntos
Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Imuno-Histoquímica , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Camundongos , Camundongos Knockout , Microambiente Tumoral
7.
Front Immunol ; 10: 1386, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275322

RESUMO

Inflammatory diseases of the gastrointestinal tract are emerging as a global problem with increased evidence and prevalence in numerous countries. A dysregulated sphingolipid metabolism occurs in patients with ulcerative colitis and is discussed to contribute to its pathogenesis. In the present study, we determined the impact of acid sphingomyelinase (Asm), which catalyzes the hydrolysis of sphingomyelin to ceramide, on the course of Citrobacter (C.) rodentium-driven colitis. C. rodentium is an enteric pathogen and induces colonic inflammation very similar to the pathology in patients with ulcerative colitis. We found that mice with Asm deficiency or Asm inhibition were strongly susceptible to C. rodentium infection. These mice showed increased levels of C. rodentium in the feces and were prone to bacterial spreading to the systemic organs. In addition, mice lacking Asm activity showed an uncontrolled inflammatory Th1 and Th17 response, which was accompanied by a stronger colonic pathology compared to infected wild type mice. These findings identified Asm as an essential regulator of mucosal immunity to the enteric pathogen C. rodentium.


Assuntos
Colite/etiologia , Colite/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Esfingomielina Fosfodiesterase/metabolismo , Amitriptilina/farmacologia , Animais , Biomarcadores , Citrobacter rodentium/imunologia , Colite/patologia , Modelos Animais de Doenças , Resistência à Doença/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Ativação Enzimática/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Subpopulações de Linfócitos T/metabolismo
8.
Eur J Med Chem ; 124: 17-35, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27560280

RESUMO

Herein we report the design, synthesis, bioinformatic and biological studies of benzimidazole and benzothiophene derivatives as new cannabinoid receptor ligands. To test the hypothesis that the lack of a hydrogen bond interaction between benzimidazole and benzothiophene derivatives with Lys192 reduces their affinity for CB1 receptors (as we previously reported) and leads to CB2 selectivity, most of the tested compounds do not exhibit hydrogen bond acceptors. All compounds displayed mostly CB2 selectivity, although this was more pronounced in the benzimidazoles derivatives. Furthermore, docking assays revealed a ∏-cation interaction with Lys109 which could play a key role for the CB2 selectivity index. The series displayed low toxicity on five different cell lines. Derivative 8f presented the best binding profile (Ki = 0.08 µM), high selectivity index (KiCB1/KiCB2) and a low citoxicity. Interestingly, in cell viability experiments, using HL-60 cells (expressing exclusively CB2 receptors), all synthesised compounds were shown to be cytotoxic, suggesting that a CB2 agonist response may be involved.


Assuntos
Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Simulação de Acoplamento Molecular , Receptor CB2 de Canabinoide/metabolismo , Tiofenos/metabolismo , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Desenho de Fármacos , Humanos , Ligação Proteica , Conformação Proteica , Receptor CB2 de Canabinoide/química , Tiofenos/síntese química , Tiofenos/química
9.
Br J Pharmacol ; 171(6): 1408-19, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24102214

RESUMO

BACKGROUND AND PURPOSE: Prostamides are lipid mediators formed by COX-2-catalysed oxidation of the endocannabinoid anandamide and eliciting effects often opposed to those caused by anandamide. Prostamides may be formed when hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) is physiologically, pathologically or pharmacologically decreased. Thus, therapeutic benefits of FAAH inhibitors might be attenuated by concomitant production of prostamide F2 α . This loss of benefit might be minimized by compounds designed to selectively antagonize prostamide receptors and also inhibiting FAAH. EXPERIMENTAL APPROACH: Inhibition of FAAH by a series of selective antagonists of prostamide receptors, including AGN 204396, AGN 211335 and AGN 211336, was assessed using rat, mouse and human FAAH in vitro, together with affinity for human recombinant CB1 and CB2 receptors. Effects in vivo were measured in a model of formalin-induced inflammatory pain in mice. KEY RESULTS: The prostamide F2 α receptor antagonists were active against mouse and rat FAAH in the low µM range and behaved as non-competitive and plasma membrane-permeant inhibitors. AGN 211335, the most potent inhibitor of rat FAAH (IC50 = 1.2 µM), raised exogenous anandamide levels in intact cells and also bound to cannabinoid CB1 receptors. Both AGN 211335 and AGN 211336 (0.25-1 mg·kg(-1) , i.p.) inhibited the formalin-induced nociceptive response in mice. CONCLUSIONS AND IMPLICATIONS: Synthetic compounds with indirect agonist activity at cannabinoid receptors and antagonist activity at prostamide receptors can be developed. Such compounds could be used as alternatives to selective FAAH inhibitors to prevent the possibility of prostamide F2 α -induced inflammation and pain. LINKED ARTICLES: This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.


Assuntos
Amidoidrolases/antagonistas & inibidores , Dinoprostona/análogos & derivados , Inibidores Enzimáticos/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Animais , Gatos , Dinoprostona/metabolismo , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA