Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 149(3): 708-21, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22541439

RESUMO

Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. We studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell-predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Interneurônios/metabolismo , Aprendizagem , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1 , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Sódio/metabolismo , Sinapses
2.
Nature ; 612(7939): 218-220, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450951
3.
Nat Rev Neurosci ; 17(12): 777-792, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27829687

RESUMO

The function of neural circuits and networks can be controlled, in part, by modulating the synchrony of their components' activities. Network hypersynchrony and altered oscillatory rhythmic activity may contribute to cognitive abnormalities in Alzheimer disease (AD). In this condition, network activities that support cognition are altered decades before clinical disease onset, and these alterations predict future pathology and brain atrophy. Although the precise causes and pathophysiological consequences of these network alterations remain to be defined, interneuron dysfunction and network abnormalities have emerged as potential mechanisms of cognitive dysfunction in AD and related disorders. Here, we explore the concept that modulating these mechanisms may help to improve brain function in these conditions.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Interneurônios/fisiologia , Rede Nervosa/fisiopatologia , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Humanos , Interneurônios/patologia , Rede Nervosa/patologia , Vias Neurais/patologia , Vias Neurais/fisiopatologia
4.
Proc Natl Acad Sci U S A ; 109(42): E2895-903, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22869752

RESUMO

In light of the rising prevalence of Alzheimer's disease (AD), new strategies to prevent, halt, and reverse this condition are needed urgently. Perturbations of brain network activity are observed in AD patients and in conditions that increase the risk of developing AD, suggesting that aberrant network activity might contribute to AD-related cognitive decline. Human amyloid precursor protein (hAPP) transgenic mice simulate key aspects of AD, including pathologically elevated levels of amyloid-ß peptides in brain, aberrant neural network activity, remodeling of hippocampal circuits, synaptic deficits, and behavioral abnormalities. Whether these alterations are linked in a causal chain remains unknown. To explore whether hAPP/amyloid-ß-induced aberrant network activity contributes to synaptic and cognitive deficits, we treated hAPP mice with different antiepileptic drugs. Among the drugs tested, only levetiracetam (LEV) effectively reduced abnormal spike activity detected by electroencephalography. Chronic treatment with LEV also reversed hippocampal remodeling, behavioral abnormalities, synaptic dysfunction, and deficits in learning and memory in hAPP mice. Our findings support the hypothesis that aberrant network activity contributes causally to synaptic and cognitive deficits in hAPP mice. LEV might also help ameliorate related abnormalities in people who have or are at risk for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anticonvulsivantes/farmacologia , Transtornos Cognitivos/tratamento farmacológico , Cognição/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Piracetam/análogos & derivados , Sinapses/efeitos dos fármacos , Doença de Alzheimer/complicações , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análise de Variância , Animais , Anticonvulsivantes/sangue , Anticonvulsivantes/uso terapêutico , Western Blotting , Transtornos Cognitivos/etiologia , Eletroencefalografia , Humanos , Imuno-Histoquímica , Levetiracetam , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Rede Nervosa/fisiopatologia , Piracetam/sangue , Piracetam/farmacologia , Piracetam/uso terapêutico
5.
Proc Natl Acad Sci U S A ; 107(42): 18173-8, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20921410

RESUMO

Long-term memory relies on modulation of synaptic connections in response to experience. This plasticity involves trafficking of AMPA receptors (AMPAR) and alteration of spine morphology. Arc, a gene induced by synaptic activity, mediates the endocytosis of AMPA receptors and is required for both long-term and homeostatic plasticity. We found that Arc increases spine density and regulates spine morphology by increasing the proportion of thin spines. Furthermore, Arc specifically reduces surface GluR1 internalization at thin spines, and Arc mutants that fail to facilitate AMPAR endocytosis do not increase the proportion of thin spines, suggesting that Arc-mediated AMPAR endocytosis facilitates alterations in spine morphology. Thus, by linking spine morphology with AMPAR endocytosis, Arc balances synaptic downscaling with increased structural plasticity. Supporting this, loss of Arc in vivo leads to a significant decrease in the proportion of thin spines and an epileptic-like network hyperexcitability.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Sinapses/fisiologia , Animais , Proteínas do Citoesqueleto/genética , Memória , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neuropeptídeo Y/metabolismo , Receptores de AMPA/metabolismo , Receptores de AMPA/fisiologia , Sinapses/metabolismo
6.
bioRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37398301

RESUMO

CRISPR-based genetic screening directly in mammalian tissues in vivo is challenging due to the need for scalable, cell-type selective delivery and recovery of guide RNA libraries. We developed an in vivo adeno-associated virus-based and Cre recombinase-dependent workflow for cell type-selective CRISPR interference screening in mouse tissues. We demonstrate the power of this approach by identifying neuron-essential genes in the mouse brain using a library targeting over 2000 genes.

7.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37333294

RESUMO

Progress in understanding long COVID and developing effective therapeutics is hampered in part by the lack of suitable animal models. Here we used ACE2-transgenic mice recovered from Omicron (BA.1) infection to test for pulmonary and behavioral post-acute sequelae. Through in-depth phenotyping by CyTOF, we demonstrate that naïve mice experiencing a first Omicron infection exhibit profound immune perturbations in the lung after resolving acute infection. This is not observed if mice were first vaccinated with spike-encoding mRNA. The protective effects of vaccination against post-acute sequelae were associated with a highly polyfunctional SARS-CoV-2-specific T cell response that was recalled upon BA.1 breakthrough infection but not seen with BA.1 infection alone. Without vaccination, the chemokine receptor CXCR4 was uniquely upregulated on multiple pulmonary immune subsets in the BA.1 convalescent mice, a process previously connected to severe COVID-19. Taking advantage of recent developments in machine learning and computer vision, we demonstrate that BA.1 convalescent mice exhibited spontaneous behavioral changes, emotional alterations, and cognitive-related deficits in context habituation. Collectively, our data identify immunological and behavioral post-acute sequelae after Omicron infection and uncover a protective effect of vaccination against post-acute pulmonary immune perturbations.

8.
J Neurosci ; 31(2): 700-11, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21228179

RESUMO

Alzheimer's disease (AD), the most common neurodegenerative disorder, is a growing public health problem and still lacks effective treatments. Recent evidence suggests that microtubule-associated protein tau may mediate amyloid-ß peptide (Aß) toxicity by modulating the tyrosine kinase Fyn. We showed previously that tau reduction prevents, and Fyn overexpression exacerbates, cognitive deficits in human amyloid precursor protein (hAPP) transgenic mice overexpressing Aß. However, the mechanisms by which Aß, tau, and Fyn cooperate in AD-related pathogenesis remain to be fully elucidated. Here we examined the synaptic and network effects of this pathogenic triad. Tau reduction prevented cognitive decline induced by synergistic effects of Aß and Fyn. Tau reduction also prevented synaptic transmission and plasticity deficits in hAPP mice. Using electroencephalography to examine network effects, we found that tau reduction prevented spontaneous epileptiform activity in multiple lines of hAPP mice. Tau reduction also reduced the severity of spontaneous and chemically induced seizures in mice overexpressing both Aß and Fyn. To better understand these protective effects, we recorded whole-cell currents in acute hippocampal slices from hAPP mice with and without tau. hAPP mice with tau had increased spontaneous and evoked excitatory currents, reduced inhibitory currents, and NMDA receptor dysfunction. Tau reduction increased inhibitory currents and normalized excitation/inhibition balance and NMDA receptor-mediated currents in hAPP mice. Our results indicate that Aß, tau, and Fyn jointly impair synaptic and network function and suggest that disrupting the copathogenic relationship between these factors could be of therapeutic benefit.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/fisiologia , Transtornos Cognitivos/fisiopatologia , Rede Nervosa/fisiologia , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Sinapses/fisiologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/mortalidade , Animais , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Hipocampo/fisiopatologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Mutantes , Plasticidade Neuronal , Convulsões/metabolismo , Convulsões/fisiopatologia , Especificidade da Espécie , Transmissão Sináptica , Proteínas tau/genética
9.
Nature ; 443(7113): 768-73, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17051202

RESUMO

Patients with Alzheimer's disease or other neurodegenerative disorders show remarkable fluctuations in neurological functions, even during the same day. These fluctuations cannot be caused by sudden loss or gain of nerve cells. Instead, it is likely that they reflect variations in the activity of neural networks and, perhaps, chronic intoxication by abnormal proteins that the brain is temporarily able to overcome. These ideas have far-reaching therapeutic implications.


Assuntos
Doenças Neurodegenerativas/fisiopatologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Plasticidade Neuronal , Sinapses/metabolismo
10.
Commun Biol ; 5(1): 1267, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400882

RESUMO

Quantification and detection of the hierarchical organization of behavior is a major challenge in neuroscience. Recent advances in markerless pose estimation enable the visualization of high-dimensional spatiotemporal behavioral dynamics of animal motion. However, robust and reliable technical approaches are needed to uncover underlying structure in these data and to segment behavior into discrete hierarchically organized motifs. Here, we present an unsupervised probabilistic deep learning framework that identifies behavioral structure from deep variational embeddings of animal motion (VAME). By using a mouse model of beta amyloidosis as a use case, we show that VAME not only identifies discrete behavioral motifs, but also captures a hierarchical representation of the motif's usage. The approach allows for the grouping of motifs into communities and the detection of differences in community-specific motif usage of individual mouse cohorts that were undetectable by human visual observation. Thus, we present a robust approach for the segmentation of animal motion that is applicable to a wide range of experimental setups, models and conditions without requiring supervised or a-priori human interference.


Assuntos
Comportamento Animal , Neurociências , Animais , Humanos , Movimento (Física)
11.
Mol Neurodegener ; 17(1): 41, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690868

RESUMO

BACKGROUND: Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding mutations (Swedish, Arctic and Austrian) to the mouse App gene. Amyloid-ß pathology, neurodegeneration, glial responses, brain metabolism and behavioral phenotypes were characterized in heterozygous and homozygous AppSAA mice at different ages in brain and/ or biofluids. Wild type littermate mice were used as experimental controls. We used in situ imaging technologies to define the whole-brain distribution of amyloid plaques and compare it to other AD mouse models and human brain pathology. To further explore the microglial response to AD relevant pathology, we isolated microglia with fibrillar Aß content from the brain and performed transcriptomics and metabolomics analyses and in vivo brain imaging to measure energy metabolism and microglial response. Finally, we also characterized the mice in various behavioral assays. RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aß content. The AppSAA knock-in mouse model recapitulates key pathological features of AD such as a progressive accumulation of parenchymal amyloid plaques and vascular amyloid deposits, altered astroglial and microglial responses and elevation of CSF markers of neurodegeneration. Those observations were associated with increased TSPO and FDG-PET brain signals and a hyperactivity phenotype as the animals aged. DISCUSSION: Our findings demonstrate that fibrillar Aß in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia , Receptores de GABA/metabolismo
12.
Neuron ; 55(5): 697-711, 2007 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-17785178

RESUMO

Neural network dysfunction may play an important role in Alzheimer's disease (AD). Neuronal circuits vulnerable to AD are also affected in human amyloid precursor protein (hAPP) transgenic mice. hAPP mice with high levels of amyloid-beta peptides in the brain develop AD-like abnormalities, including cognitive deficits and depletions of calcium-related proteins in the dentate gyrus, a region critically involved in learning and memory. Here, we report that hAPP mice have spontaneous nonconvulsive seizure activity in cortical and hippocampal networks, which is associated with GABAergic sprouting, enhanced synaptic inhibition, and synaptic plasticity deficits in the dentate gyrus. Many Abeta-induced neuronal alterations could be simulated in nontransgenic mice by excitotoxin challenge and prevented in hAPP mice by blocking overexcitation. Aberrant increases in network excitability and compensatory inhibitory mechanisms in the hippocampus may contribute to Abeta-induced neurological deficits in hAPP mice and, possibly, also in humans with AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Giro Denteado/fisiopatologia , Epilepsia/fisiopatologia , Inibição Neural/genética , Vias Neurais/fisiopatologia , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Giro Denteado/metabolismo , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/metabolismo , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neocórtex/metabolismo , Neocórtex/fisiopatologia , Vias Neurais/metabolismo , Plasticidade Neuronal/fisiologia , Neurotoxinas/farmacologia , Transmissão Sináptica/genética , Ácido gama-Aminobutírico/metabolismo
13.
J Neurosci ; 30(6): 2223-34, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20147549

RESUMO

Striatal GABAergic microcircuits are critical for motor function, yet their properties remain enigmatic due to difficulties in targeting striatal interneurons for electrophysiological analysis. Here, we use Lhx6-GFP transgenic mice to identify GABAergic interneurons and investigate their regulation of striatal direct- and indirect-pathway medium spiny neurons (MSNs). We find that the two major interneuron populations, persistent low-threshold spiking (PLTS) and fast spiking (FS) interneurons, differ substantially in their excitatory inputs and inhibitory outputs. Excitatory synaptic currents recorded from PLTS interneurons are characterized by a small, nonrectifying AMPA receptor-mediated component and a NMDA receptor-mediated component. In contrast, glutamatergic synaptic currents in FS interneurons have a large, strongly rectifying AMPA receptor-mediated component, but no detectable NMDA receptor-mediated responses. Consistent with their axonal morphology, the output of individual PLTS interneurons is relatively weak and sparse, whereas FS interneurons are robustly connected to MSNs and other FS interneurons and appear to mediate the bulk of feedforward inhibition. Synaptic depression of FS outputs is relatively insensitive to firing frequency, and dynamic-clamp experiments reveal that these short-term dynamics enable feedforward inhibition to remain efficacious across a broad frequency range. Surprisingly, we find that FS interneurons preferentially target direct-pathway MSNs over indirect-pathway MSNs, suggesting a potential mechanism for rapid pathway-specific regulation of striatal output pathways.


Assuntos
Corpo Estriado/fisiologia , Interneurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação , Animais , Camundongos , Camundongos Transgênicos , Inibição Neural , Vias Neurais , Técnicas de Patch-Clamp , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia
14.
Am J Pathol ; 177(2): 563-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20595630

RESUMO

The lipid transport protein apolipoprotein E (apoE) is abundantly expressed in the brain. Its main isoforms in humans are apoE2, apoE3, and apoE4. ApoE4 is the major known genetic risk factor for Alzheimer's disease and also contributes to the pathogenesis of various other neurological conditions. In the central nervous system, apoE is synthesized by glial cells and neurons, but it is unclear whether the cellular source affects its biological activities. To address this issue, we induced excitotoxic injury by systemic kainic acid injection in transgenic Apoe knockout mice expressing human apoE isoforms in astrocytes or neurons. Regardless of its cellular source, apoE3 expression protected neuronal synapses and dendrites against the excitotoxicity seen in apoE-deficient mice. Astrocyte-derived apoE4, which has previously been shown to have detrimental effects in vitro, was as excitoprotective as apoE3 in vivo. In contrast, neuronal expression of apoE4 was not protective and resulted in loss of cortical neurons after excitotoxic challenge, indicating that neuronal apoE4 promotes excitotoxic cell death. Thus, an imbalance between astrocytic (excitoprotective) and neuronal (neurotoxic) apoE4 expression may increase susceptibility to diverse neurological diseases involving excitotoxic mechanisms.


Assuntos
Apolipoproteína E4/metabolismo , Camundongos Transgênicos , Neurônios , Isoformas de Proteínas/metabolismo , Animais , Apolipoproteína E4/genética , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Humanos , Ácido Caínico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Isoformas de Proteínas/genética
15.
Nat Med ; 10(11): 1190-2, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15502844

RESUMO

The Arctic mutation within the amyloid-beta (Abeta) peptide causes Alzheimer disease. In vitro, Arctic-mutant Abeta forms (proto)fibrils more effectively than wild-type Abeta. We generated transgenic mouse lines expressing Arctic-mutant human amyloid precursor proteins (hAPP). Amyloid plaques formed faster and were more extensive in Arctic mice than in hAPP mice expressing wild-type Abeta, even though Arctic mice had lower Abeta(1-42/1-40) ratios. Thus, the Arctic mutation is highly amyloidogenic in vivo.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Mutação/genética , Placa Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
16.
Nat Neurosci ; 24(1): 19-23, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33318667

RESUMO

Microglial surveillance is a key feature of brain physiology and disease. Here, we found that Gi-dependent microglial dynamics prevent neuronal network hyperexcitability. By generating MgPTX mice to genetically inhibit Gi in microglia, we show that sustained reduction of microglia brain surveillance and directed process motility induced spontaneous seizures and increased hypersynchrony after physiologically evoked neuronal activity in awake adult mice. Thus, Gi-dependent microglia dynamics may prevent hyperexcitability in neurological diseases.


Assuntos
Receptor Quinase 1 Acoplada a Proteína G/fisiologia , Microglia/fisiologia , Rede Nervosa/fisiologia , Animais , Sinalização do Cálcio , Movimento Celular , Convulsivantes , Eletroencefalografia , Vigilância Imunológica , Camundongos , Microglia/enzimologia , Microglia/ultraestrutura , Doenças do Sistema Nervoso/fisiopatologia , Fenômenos Fisiológicos do Sistema Nervoso , Pilocarpina , Convulsões/fisiopatologia , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo
17.
Mol Neurodegener ; 15(1): 53, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32921309

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most frequent and costly neurodegenerative disorder. Although diverse lines of evidence suggest that the amyloid precursor protein (APP) is involved in its causation, the precise mechanisms remain unknown and no treatments are available to prevent or halt the disease. A favorite hypothesis has been that APP contributes to AD pathogenesis through the cerebral accumulation of the amyloid-ß peptide (Aß), which is derived from APP through sequential proteolytic cleavage by BACE1 and γ-secretase. However, inhibitors of these enzymes have failed in clinical trials despite clear evidence for target engagement. METHODS: To further elucidate the roles of APP and its metabolites in AD pathogenesis, we analyzed transgenic mice overexpressing wildtype human APP (hAPP) or hAPP carrying mutations that cause autosomal dominant familial AD (FAD), as well as App knock-in mice that do not overexpress hAPP but have two mouse App alleles with FAD mutations and a humanized Aß sequence. RESULTS: Although these lines of mice had marked differences in cortical and hippocampal levels of APP, APP C-terminal fragments, soluble Aß, Aß oligomers and age-dependent amyloid deposition, they all developed cognitive deficits as well as non-convulsive epileptiform activity, a type of network dysfunction that also occurs in a substantive proportion of humans with AD. Pharmacological inhibition of BACE1 effectively reduced levels of amyloidogenic APP C-terminal fragments (C99), soluble Aß, Aß oligomers, and amyloid deposits in transgenic mice expressing FAD-mutant hAPP, but did not improve their network dysfunction and behavioral abnormalities, even when initiated at early stages before amyloid deposits were detectable. CONCLUSIONS: hAPP transgenic and App knock-in mice develop similar pathophysiological alterations. APP and its metabolites contribute to AD-related functional alterations through complex combinatorial mechanisms that may be difficult to block with BACE inhibitors and, possibly, also with other anti-Aß treatments.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Rede Nervosa/metabolismo , Rede Nervosa/patologia
18.
Sci Transl Med ; 12(558)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848093

RESUMO

A major sex difference in Alzheimer's disease (AD) is that men with the disease die earlier than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development modified mortality in hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate gene Kdm6a, which does not undergo X-linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain expression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Animais , Feminino , Masculino , Camundongos , Caracteres Sexuais , Testículo , Cromossomo X/genética , Cromossomo Y
19.
Cell Rep ; 30(2): 381-396.e4, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940483

RESUMO

NMDA receptors (NMDARs) play subunit-specific roles in synaptic function and are implicated in neuropsychiatric and neurodegenerative disorders. However, the in vivo consequences and therapeutic potential of pharmacologically enhancing NMDAR function via allosteric modulation are largely unknown. We examine the in vivo effects of GNE-0723, a positive allosteric modulator of GluN2A-subunit-containing NMDARs, on brain network and cognitive functions in mouse models of Dravet syndrome (DS) and Alzheimer's disease (AD). GNE-0723 use dependently potentiates synaptic NMDA receptor currents and reduces brain oscillation power with a predominant effect on low-frequency (12-20 Hz) oscillations. Interestingly, DS and AD mouse models display aberrant low-frequency oscillatory power that is tightly correlated with network hypersynchrony. GNE-0723 treatment reduces aberrant low-frequency oscillations and epileptiform discharges and improves cognitive functions in DS and AD mouse models. GluN2A-subunit-containing NMDAR enhancers may have therapeutic benefits in brain disorders with network hypersynchrony and cognitive impairments.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Ciclopropanos/farmacologia , Epilepsias Mioclônicas/tratamento farmacológico , Nitrilas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Tiazóis/farmacologia , Regulação Alostérica/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Células CHO , Cricetulus , Modelos Animais de Doenças , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirazóis/farmacologia , Receptores de N-Metil-D-Aspartato/agonistas
20.
Neurobiol Aging ; 85: 58-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739167

RESUMO

Electrophysiology provides a real-time readout of neural functions and network capability in different brain states, on temporal (fractions of milliseconds) and spatial (micro, meso, and macro) scales unmet by other methodologies. However, current international guidelines do not endorse the use of electroencephalographic (EEG)/magnetoencephalographic (MEG) biomarkers in clinical trials performed in patients with Alzheimer's disease (AD), despite a surge in recent validated evidence. This position paper of the ISTAART Electrophysiology Professional Interest Area endorses consolidated and translational electrophysiological techniques applied to both experimental animal models of AD and patients, to probe the effects of AD neuropathology (i.e., brain amyloidosis, tauopathy, and neurodegeneration) on neurophysiological mechanisms underpinning neural excitation/inhibition and neurotransmission as well as brain network dynamics, synchronization, and functional connectivity, reflecting thalamocortical and corticocortical residual capacity. Converging evidence shows relationships between abnormalities in EEG/MEG markers and cognitive deficits in groups of AD patients at different disease stages. The supporting evidence for the application of electrophysiology in AD clinical research as well as drug discovery pathways warrants an international initiative to include the use of EEG/MEG biomarkers in the main multicentric projects planned in AD patients, to produce conclusive findings challenging the present regulatory requirements and guidelines for AD studies.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Eletrofisiologia/métodos , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Descoberta de Drogas , Eletroencefalografia , Potenciais Evocados , Humanos , Magnetoencefalografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA