Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 187(6): 1363-1373.e12, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38366591

RESUMO

In response to the 2022 outbreak of mpox driven by unprecedented human-to-human monkeypox virus (MPXV) transmission, we designed BNT166, aiming to create a highly immunogenic, safe, accessible, and scalable next-generation vaccine against MPXV and related orthopoxviruses. To address the multiple viral forms and increase the breadth of immune response, two candidate multivalent mRNA vaccines were evaluated pre-clinically: a quadrivalent vaccine (BNT166a; encoding the MPXV antigens A35, B6, M1, H3) and a trivalent vaccine (BNT166c; without H3). Both candidates induced robust T cell responses and IgG antibodies in mice, including neutralizing antibodies to both MPXV and vaccinia virus. In challenge studies, BNT166a and BNT166c provided complete protection from vaccinia, clade I, and clade IIb MPXV. Furthermore, immunization with BNT166a was 100% effective at preventing death and at suppressing lesions in a lethal clade I MPXV challenge in cynomolgus macaques. These findings support the clinical evaluation of BNT166, now underway (NCT05988203).


Assuntos
Monkeypox virus , Mpox , Vacina Antivariólica , Animais , Humanos , Camundongos , Macaca fascicularis , Monkeypox virus/genética , Mpox/imunologia , Mpox/prevenção & controle , Vacinas Combinadas , Vaccinia virus/genética
2.
Proc Natl Acad Sci U S A ; 115(40): 10022-10027, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224458

RESUMO

All cells obtain 2'-deoxyribonucleotides for DNA synthesis through the activity of a ribonucleotide reductase (RNR). The class I RNRs found in humans and pathogenic bacteria differ in (i) use of Fe(II), Mn(II), or both for activation of the dinuclear-metallocofactor subunit, ß; (ii) reaction of the reduced dimetal center with dioxygen or superoxide for this activation; (iii) requirement (or lack thereof) for a flavoprotein activase, NrdI, to provide the superoxide from O2; and (iv) use of either a stable tyrosyl radical or a high-valent dimetal cluster to initiate each turnover by oxidizing a cysteine residue in the α subunit to a radical (Cys•). The use of manganese by bacterial class I, subclass b-d RNRs, which contrasts with the exclusive use of iron by the eukaryotic Ia enzymes, appears to be a countermeasure of certain pathogens against iron deprivation imposed by their hosts. Here, we report a metal-free type of class I RNR (subclass e) from two human pathogens. The Cys• in its α subunit is generated by a stable, tyrosine-derived dihydroxyphenylalanine radical (DOPA•) in ß. The three-electron oxidation producing DOPA• occurs in Escherichia coli only if the ß is coexpressed with the NrdI activase encoded adjacently in the pathogen genome. The independence of this new RNR from transition metals, or the requirement for a single metal ion only transiently for activation, may afford the pathogens an even more potent countermeasure against transition metal-directed innate immunity.


Assuntos
Di-Hidroxifenilalanina/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Radicais Livres/química , Ribonucleotídeo Redutases/química , Tirosina/química , Di-Hidroxifenilalanina/metabolismo , Proteínas de Escherichia coli/metabolismo , Radicais Livres/metabolismo , Ribonucleotídeo Redutases/metabolismo , Tirosina/metabolismo
3.
Biochemistry ; 58(14): 1845-1860, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30855138

RESUMO

Class I ribonucleotide reductases (RNRs) share a common mechanism of nucleotide reduction in a catalytic α subunit. All RNRs initiate catalysis with a thiyl radical, generated in class I enzymes by a metallocofactor in a separate ß subunit. Class Id RNRs use a simple mechanism of cofactor activation involving oxidation of a MnII2 cluster by free superoxide to yield a metal-based MnIIIMnIV oxidant. This simple cofactor assembly pathway suggests that class Id RNRs may be representative of the evolutionary precursors to more complex class Ia-c enzymes. X-ray crystal structures of two class Id α proteins from Flavobacterium johnsoniae ( Fj) and Actinobacillus ureae ( Au) reveal that this subunit is distinctly small. The enzyme completely lacks common N-terminal ATP-cone allosteric motifs that regulate overall activity, a process that normally occurs by dATP-induced formation of inhibitory quaternary structures to prevent productive ß subunit association. Class Id RNR activity is insensitive to dATP in the Fj and Au enzymes evaluated here, as expected. However, the class Id α protein from Fj adopts higher-order structures, detected crystallographically and in solution. The Au enzyme does not exhibit these quaternary forms. Our study reveals structural similarity between bacterial class Id and eukaryotic class Ia α subunits in conservation of an internal auxiliary domain. Our findings with the Fj enzyme illustrate that nucleotide-independent higher-order quaternary structures can form in simple RNRs with truncated or missing allosteric motifs.


Assuntos
Domínio Catalítico , Desoxirribonucleotídeos/química , Conformação Proteica , Ribonucleotídeo Redutases/química , Actinobacillus/enzimologia , Actinobacillus/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Biocatálise , Cristalografia por Raios X , Desoxirribonucleotídeos/biossíntese , Desoxirribonucleotídeos/genética , Flavobacterium/enzimologia , Flavobacterium/genética , Modelos Moleculares , Filogenia , Ribonucleotídeo Redutases/classificação , Ribonucleotídeo Redutases/genética , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA