Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Chem Phys ; 158(12): 124125, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003780

RESUMO

Hydrogen (H) removal in plasma-facing materials (PFMs) has been an important issue in the field of manually controllable fusion reactions. The tungsten nitride (WNx) film, as a by-product on the divertor surface in the fusion reactor after nitrogen seeding, has rich H retention, and much attention should be given to hydrogen removal from WNx. In this paper, by using density functional theory calculations, we predicted a novel W24N48 crystal, which possesses nanoscale cavities and channels inside, and studied the interaction between it and hydrogen. We found that the N atoms inside the crystal are favorable for the adsorption of atomic hydrogen. When more hydrogen atoms are injected, the hydrogen atoms adsorbed in the crystal react with the newly entered hydrogen atoms to form hydrogen molecules. These newly formed H2 molecules can easily move through the nanochannels in W24N48 and serve to remove hydrogen. Our calculations suggest that when this new W24N48 material is embedded in the WNx film on the surface of the PFMs, the nanochannels will be helpful in removing and recycling hydrogen isotopes in the PFMs.

2.
J Chem Phys ; 151(13): 134104, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31594357

RESUMO

First-principles calculations have been performed to study the effect of cation replacement with methylammonium (MA+), Cs+, and Rb+ on the properties of formamidinium lead iodide (FAPbI3) perovskite. It is found that these dopants could improve the stability of the desired α phase of FAPbI3 at reduced temperature by lowering the transition temperature between the perovskite cubic α phase and nonperovskite hexagonal δ phase. Interestingly, the optical absorption properties and the effective masses of holes of FAPbI3 perovskite are only slightly affected. The nature of the improvement of the phase stability resulting from the cation replacement is revealed. However, the calculated mixing energies indicate that these multication materials still suffer long-term instability. Our results provide theoretical guidance for improving current multication engineering strategies or even developing new approaches.

3.
Angew Chem Int Ed Engl ; 58(41): 14764-14769, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31452325

RESUMO

Developing bifunctional catalysts for both hydrogen and oxygen evolution reactions is a promising approach to the practical implementation of electrocatalytic water splitting. However, most of the reported bifunctional catalysts are only applicable to alkaline electrolyzer, although a few are effective in acidic or neutral media that appeals more to industrial applications. Here, a lithium-intercalated iridium diselenide (Li-IrSe2 ) is developed that outperformed other reported catalysts toward overall water splitting in both acidic and neutral environments. Li intercalation activated the inert pristine IrSe2 via bringing high porosities and abundant Se vacancies for efficient hydrogen and oxygen evolution reactions. When Li-IrSe2 was assembled into two-electrode electrolyzers for overall water splitting, the cell voltages at 10 mA cm-2 were 1.44 and 1.50 V under pH 0 and 7, respectively, being record-low values in both conditions.

4.
Angew Chem Int Ed Engl ; 58(3): 731-735, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30549164

RESUMO

Nitrate is a raw ingredient for the production of fertilizer, gunpowder, and explosives. Developing an alternative approach to activate the N≡N bond of naturally abundant nitrogen to form nitrate under ambient conditions will be of importance. Herein, pothole-rich WO3 was used to catalyse the activation of N≡N covalent triple bonds for the direct nitrate synthesis at room temperature. The pothole-rich structure endues the WO3 nanosheet more dangling bonds and more easily excited high momentum electrons, which overcome the two major bottlenecks in N≡N bond activation, that is, poor binding of N2 to catalytic materials and the high energy involved in this reaction. The average rate of nitrate production is as high as 1.92 mg g-1 h-1 under ambient conditions, without any sacrificial agent or precious-metal co-catalysts. More generally, the concepts will initiate a new pathway for triggering inert catalytic reactions.

5.
J Am Chem Soc ; 140(5): 1760-1766, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29319310

RESUMO

Excitonic effects mediated by Coulomb interactions between photogenerated electrons and holes play crucial roles in photoinduced processes of semiconductors. In terms of photocatalysis, however, efforts have seldom been devoted to the relevant aspects. For the catalysts with giant excitonic effects, the coexisting, competitive exciton generation serves as a key obstacle to the yield of free charge carriers, and hence, transformation of excitons into free carriers would be beneficial for optimizing the charge-carrier-involved photocatalytic processes. Herein, by taking bismuth oxybromide (BiOBr) as a prototypical model system, we demonstrate that excitons can be effectively dissociated into charge carriers with the incorporation of oxygen vacancy, leading to excellent performances in charge-carrier-involved photocatalytic reactions such as superoxide generation and selective organic syntheses under visible-light illumination. This work not only establishes an in-depth understanding of defective structures in photocatalysts but also paves the way for excitonic regulation via defect engineering.

6.
Nano Lett ; 17(12): 7968-7973, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29178807

RESUMO

Exploring efficient and economical electrocatalysts for hydrogen evolution reaction is of great significance for water splitting on an industrial scale. Tungsten oxide, WO3, has been long expected to be a promising non-precious-metal electrocatalyst for hydrogen production. However, the poor intrinsic activity of this material hampers its development. Herein, we design a highly efficient hydrogen evolution electrocatalyst via introducing oxygen vacancies into WO3 nanosheets. Our first-principles calculations demonstrate that the gap states introduced by O vacancies make WO3 act as a degenerate semiconductor with high conductivity and desirable hydrogen adsorption free energy. Experimentally, we prepared WO3 nanosheets rich in oxygen vacancies via a liquid exfoliation, which indeed exhibits the typical character of a degenerate semiconductor. When evaluated by hydrogen evolution, the nanosheets display superior performance with a small overpotential of 38 mV at 10 mA cm-2 and a low Tafel slope of 38 mV dec-1. This work opens an effective route to develop conductive tungsten oxide as a potential alternative to the state-of-the-art platinum for hydrogen evolution.

7.
J Am Chem Soc ; 139(13): 4737-4742, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28282129

RESUMO

Numerous efforts have been devoted to understanding the excitation processes of photocatalysts, whereas the potential Coulomb interactions between photogenerated electrons and holes have been long ignored. Once these interactions are considered, excitonic effects will arise that undoubtedly influence the sunlight-driven catalytic processes. Herein, by taking bismuth oxyhalide as examples, we proposed that giant electron-hole interactions would be expected in confined layered structures, and excitons would be the dominating photoexcited species. Photocatalytic molecular oxygen activation tests were performed as a proof of concept, where singlet oxygen generation via energy transfer process was brightened. Further experiments verify that structural confinement is curial to the giant excitonic effects, where the involved catalytic process could be readily regulated via facet-engineering, thus enabling diverse reactive oxygen species generation. This study not only provides an excitonic prospective on photocatalytic processes, but also paves a new approach for pursuing systems with giant electron-hole interactions.

8.
Small ; 13(7)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27918646

RESUMO

Molybdenum diselenide (MoSe2 ) has emerged as a promising electrocatalyst for hydrogen evolution reaction (HER). However, its properties are still confined due to the limited active sites and poor conductivity. Thus, it remains a great challenge to synergistically achieve structural and electronic modulations for MoSe2 -based HER catalysts because of the contradictory relationship between these two characteristics. Herein, bacterial cellulose-derived carbon nanofibers are used to assist the uniform growth of few-layered MoSe2 nanosheets, which effectively increase the active sites of MoSe2 for hydrogen atom adsorption. Meanwhile, carbonized bacterial cellulose (CBC) nanofibers provide a 3D network for electrolyte penetration into the inner space and accelerate electron transfer as well, thus leading to the dramatically increased HER activity. In acidic media, the CBC/MoSe2 hybrid catalyst exhibits fast hydrogen evolution kinetics with onset overpotential of 91 mV and Tafel slope of 55 mV dec-1 , which is much more outstanding than both bulk MoSe2 aggregates and CBC nanofibers. Furthermore, the fast HER kinetics are well supported by theoretical calculations of density-functional-theory analysis with a low activation barrier of 0.08 eV for H2 generation. Hence, this work highlights an efficient solution to develop high-performance HER catalysts by incorporating biotemplate materials, to simultaneously achieve increased active sites and conductivity.


Assuntos
Condutividade Elétrica , Hidrogênio/análise , Imageamento Tridimensional , Molibdênio/química , Nanofibras/química , Selênio/química , Bactérias/química , Catálise , Celulose/química , Elétrons , Íons , Nanofibras/ultraestrutura , Teoria Quântica , Difração de Raios X
9.
Nanotechnology ; 28(35): 355201, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28636567

RESUMO

The search for low-dimensional materials with unique electronic properties is important for the development of electronic devices in the nanoscale. Through systematic first-principles calculations, we found that the band gaps of the two-dimensional honeycomb monolayers (HMs) and one-dimensional single-walled nanotubes (SWNTs) of IIB-VI semiconductors (ZnO, CdO, ZnS and CdS) are nearly chirality-independent and weakly diameter-dependent. Based on analysis of the electronic structures, it was found that the conduction band minimum is contributed to by the spherically symmetric s orbitals of cations and the valence band maximum is dominated by the in-plane [Formula: see text] and [Formula: see text] hybridizations. These electronic states are robust against radius curvature, resulting in the invariant feature of the band gaps for the structures changing from HM to SWNTs. The band gaps of these materials range from 2.3 to 4.7 eV, which is of potential application in electronic devices and optoelectronic devices. Our studies show that searching for and designing specific electronic structures can facilitate the process of exploring novel nanomaterials for future applications.

10.
J Am Chem Soc ; 138(15): 5087-92, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27018462

RESUMO

The exploration of efficient nonprecious metal eletrocatalysis of the hydrogen evolution reaction (HER) is an extraordinary challenge for future applications in sustainable energy conversion. The family of first-row-transition-metal dichalcogenides has received a small amount of research, including the active site and dynamics, relative to their extraordinary potential. In response, we developed a strategy to achieve synergistically active sites and dynamic regulation in first-row-transition-metal dichalcogenides by the heterogeneous spin states incorporated in this work. Specifically, taking the metallic Mn-doped pyrite CoSe2 as a self-adaptived, subtle atomic arrangement distortion to provide additional active edge sites for HER will occur in the CoSe2 atomic layers with Mn incorporated into the primitive lattice, which is visually verified by HRTEM. Synergistically, the density functional theory simulation results reveal that the Mn incorporation lowers the kinetic energy barrier by promoting H-H bond formation on two adjacently adsorbed H atoms, benefiting H2 gas evolution. As a result, the Mn-doped CoSe2 ultrathin nanosheets possess useful HER properties with a low overpotential of 174 mV, an unexpectedly small Tafel slope of 36 mV/dec, and a larger exchange current density of 68.3 µA cm(-2). Moreover, the original concept of coordinated regulation presented in this work can broaden horizons and provide new dimensions in the design of newly highly efficient catalysts for hydrogen evolution.

11.
Phys Chem Chem Phys ; 18(29): 19631-6, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27381840

RESUMO

The band gap width of the Be-doped ZnO correlates strongly with the distribution of the dopants. By performing first-principles calculations, it is found that an interstitial Be (Bei) atom preferably migrates in a basal plane. During the migration, such a Bei atom favorably bonds to a substituted Be (BeZn) atom, forming a new defect complex (2Be)Zn, showing a trend of aggregation of Be atoms in ZnO. Furthermore, the stability of the defect complex (2Be)Zn can be weakened by a substituted Mg (MgZn). So, the Mg impurities in Be-doped ZnO might suppress the aggregation of Be, so as to significantly improve the effect of the doped Be on modulating the band gap of ZnO.

12.
J Am Chem Soc ; 137(47): 15043-8, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26535800

RESUMO

Fabricating a flexible room-temperature ferromagnetic resistive-switching random access memory (RRAM) device is of fundamental importance to integrate nonvolatile memory and spintronics both in theory and practice for modern information technology and has the potential to bring about revolutionary new foldable information-storage devices. Here, we show that a relatively low operating voltage (+1.4 V/-1.5 V, the corresponding electric field is around 20,000 V/cm) drives the dual vacancies evolution in ultrathin SnO2 nanosheets at room temperature, which causes the reversible transition between semiconductor and half-metal, accompanyied by an abrupt conductivity change up to 10(3) times, exhibiting room-temperature ferromagnetism in two resistance states. Positron annihilation spectroscopy and electron spin resonance results show that the Sn/O dual vacancies in the ultrathin SnO2 nanosheets evolve to isolated Sn vacancy under electric field, accounting for the switching behavior of SnO2 ultrathin nanosheets; on the other hand, the different defect types correspond to different conduction natures, realizing the transition between semiconductor and half-metal. Our result represents a crucial step to create new a information-storage device realizing the reversible transition between semiconductor and half-metal with flexibility and room-temperature ferromagnetism at low energy consumption. The as-obtained half-metal in the low-resistance state broadens the application of the device in spintronics and the semiconductor to half-metal transition on the basis of defects evolution and also opens up a new avenue for exploring random access memory mechanisms and finding new half-metals for spintronics.

13.
Nanotechnology ; 26(19): 195401, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25895582

RESUMO

An intermediate-band (IB) photovoltaic material is an important candidate in developing the new-generation solar cell. In this paper, we propose that the Fe-doped or the Co-doped MoSe2 just meets the required features in IB photovoltaic materials. Our calculations demonstrate that when the concentration of the doped element reaches 11.11%, the doped MoSe2 shows a high absorptivity for both infrared and visible light, where the photovoltaic efficiency of the doped MoSe2 is as high as 56%, approaching the upper limit of photovoltaic efficiency of IB materials. So, the Fe- or Co-doped MoSe2 is a promising two-dimensional photovoltaic material.

14.
Angew Chem Int Ed Engl ; 54(4): 1195-9, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25424379

RESUMO

Defect engineering is considered as one of the most efficient strategies to regulate the electronic structure of materials and involves the manipulation of the types, concentrations, and spatial distributions of defects, resulting in unprecedented properties. It is shown that a single-layered MnO2 nanosheet with vacancies is a robust half-metal, which was confirmed by theoretical calculations, whereas vacancy-free single-layered MnO2 is a typical semiconductor. The half-metallicity of the single-layered MnO2 nanosheet can be observed for a wide range of vacancy concentrations and even in the co-presence of Mn and O vacancies. This work enables the development of half-metals by defect engineering of well-established low-dimensional materials, which may be used for the design of next-generation paper-like spintronics.

15.
Angew Chem Int Ed Engl ; 54(25): 7399-404, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25951435

RESUMO

Electrochemical water splitting is a clean technology for H2 fuels, but greatly hindered by the slow kinetics of the oxygen evolution reaction (OER). Herein, a series of spinel-structured nanosheets with oxygen deficiencies and ultrathin thicknesses were designed to increase the reactivity and the number of active sites of the catalysts, which were then taken as an excellent platform for promoting the water oxidation process. Theoretical investigations showed that the oxygen vacancies confined in the ultrathin nanosheet could lower the adsorption energy of H2O, leading to increased OER efficiency. As expected, the NiCo2O4 ultrathin nanosheets rich in oxygen vacancies exhibited a large current density of 285 mA cm(-2) at 0.8 V and a small overpotential of 0.32 V, both of which are superior to the corresponding values of bulk samples or samples with few oxygen deficiencies and even higher than those of most reported non-precious-metal catalysts. This work should provide a new pathway for the design of advanced OER catalysts.

16.
Angew Chem Int Ed Engl ; 54(32): 9266-70, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26111265

RESUMO

A model of doping confined in atomic layers is proposed for atomic-level insights into the effect of doping on photocatalysis. Co doping confined in three atomic layers of In2S3 was implemented with a lamellar hybrid intermediate strategy. Density functional calculations reveal that the introduction of Co ions brings about several new energy levels and increased density of states at the conduction band minimum, leading to sharply increased visible-light absorption and three times higher carrier concentration. Ultrafast transient absorption spectroscopy reveals that the electron transfer time of about 1.6 ps from the valence band to newly formed localized states is due to Co doping. The 25-fold increase in average recovery lifetime is believed to be responsible for the increased of electron-hole separation. The synthesized Co-doped In2S3 (three atomic layers) yield a photocurrent of 1.17 mA cm(-2) at 1.5 V vs. RHE, nearly 10 and 17 times higher than that of the perfect In2S3 (three atomic layers) and the bulk counterpart, respectively.

17.
J Am Chem Soc ; 136(19): 6826-9, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24773473

RESUMO

Finding an ideal model for disclosing the role of oxygen vacancies in photocatalysis remains a huge challenge. Herein, O-vacancies confined in atomically thin sheets is proposed as an excellent platform to study the O-vacancy-photocatalysis relationship. As an example, O-vacancy-rich/-poor 5-atom-thick In2O3 porous sheets are first synthesized via a mesoscopic-assembly fast-heating strategy, taking advantage of an artificial hexagonal mesostructured In-oleate complex. Theoretical/experimental results reveal that the O-vacancies endow 5-atom-thick In2O3 sheets with a new donor level and increased states of density, hence narrowing the band gap from the UV to visible regime and improving the carrier separation efficiency. As expected, the O-vacancy-rich ultrathin In2O3 porous sheets-based photoelectrode exhibits a visible-light photocurrent of 1.73 mA/cm(2), over 2.5 and 15 times larger than that of the O-vacancy-poor ultrathin In2O3 porous sheets- and bulk In2O3-based photoelectrodes.

18.
Angew Chem Int Ed Engl ; 53(47): 12789-93, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25244183

RESUMO

A conceptually new all-solid-state asymmetric supercapacitor based on atomically thin sheets is presented which offers the opportunity to optimize supercapacitor properties on an atomic level. As a prototype, ß-Co(OH)2 single layers with five-atoms layer thickness were synthesized through an oriented-attachment strategy. The increased density-of-states and 100 % exposed hydrogen atoms endow the ß-Co(OH)2 single-layers-based electrode with a large capacitance of 2028 F g(-1) . The corresponding all-solid-state asymmetric supercapacitor achieves a high cell voltage of 1.8 V and an exceptional energy density of 98.9 Wh kg(-1) at an ultrahigh power density of 17 981 W kg(-1) . Also, this integrated nanodevice exhibits excellent cyclability with 93.2 % capacitance retention after 10 000 cycles, holding great promise for constructing high-energy storage nanodevices.

19.
Materials (Basel) ; 17(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793247

RESUMO

Both microvoids and helium (He) impurities are widely present in tungsten (W) plasma-facing materials (PFMs), where the interaction between microvoids and He atoms has led to the intriguing development of microvoids. In this paper, we comprehensively investigated the interaction between He atoms and trivacancy (V3), a fundamental microvoid in W-PFMs, at the level of tight-binding theory. Our study showed that He atoms can catalyze the decomposition of the original V3 or facilitate its transformation into another V3 variant. We propose that a He atom near the V3 defect induces significant changes in the distribution of d-electron charges within the W atoms lining the inner wall of the V3 defect, making the W atom nearest to this He atom cationic and the other W atoms anionic. The attractive interaction between them promotes the decomposition and deformation of V3. As electronic excitation increases, the ionization of W atoms on the V3 wall gradually intensifies, thereby enhancing the cationic characteristics of the W atoms closest to the He atom. This process also prompts other W atoms to shift from anions to cations, leading to a transition in the electrostatic interactions between them from attraction to repulsion. This transformation, driven by electronic excitation, plays a significant inhibitory role in the decomposition and deformation of V3.

20.
ACS Appl Mater Interfaces ; 16(26): 33485-33493, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38913604

RESUMO

The depletion of lithium resources has prompted exploration into alternative rechargeable energy storage systems, and potassium-ion batteries (PIBs) have emerged as promising candidates. As an active cathode material for PIBs, potassium vanadate (KxV2O5) usually suffers from structural damage during electrochemical K-ion insertion/extraction and hence leading to unsatisfactory cycling performance. Here, we introduce Ca2+ ions as pillars into the potassium vanadate to enhance its structural stability and smooth its phase transition behavior. The additional Ca2+ not only stabilizes the layered structure but also promotes the rearrangement of interlayer ions and leads to a smooth solid-solution phase transition. The optimal composition K0.36Ca0.05V2O5 (KCVO) exhibits outstanding cyclic stability, delivering a capacity of ∼90 mA h g-1 at 20 mA g-1 with negligible capacity decay even after 700 cycles at 500 mA g-1. Theoretical calculations indicate lower energy barriers for K+ diffusion, promoting rapid reaction kinetics. The excellent performances and detailed investigations offer insights into the structural regulation of layered vanadium cathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA