RESUMO
N6-methyladenosine (m6 A) is one of the main epitranscriptomic modifications that accelerates the progression of malignant tumors by modifying RNA. Methyltransferase-like 16 (METTL16) is a newly identified methyltransferase that has been found to play an important oncogenic role in a few malignancies; however, its function in osteosarcoma (OS) remains unclear. In this study, METTL16 was found to be upregulated in OS tissues, and associated with poor prognosis in OS patients. Functionally, METTL16 substantially promoted OS cell proliferation, migration, and invasion in vitro and OS growth in vivo. Mechanistically, vacuolar protein sorting protein 33b (VPS33B) was identified as the downstream target of METTL16, which induced m6 A modification of VPS33B and impaired the stability of the VPS33B transcript, thereby degrading VPS33B. In addition, VPS33B was found to be downregulated in OS tissues, VPS33B knockdown markedly attenuated shMETTL16-mediated inhibition on OS progression. Finally, METTL16/VPS33B might facilitate OS progression through PI3K/AKT pathway. In summary, this study revealed an important role for the METTL16-mediated m6 A modification in OS progression, implying it as a promising target for OS treatment.
Assuntos
Adenosina , Neoplasias Ósseas , Metiltransferases , Osteossarcoma , Fosfatidilinositol 3-Quinases , Proteínas de Transporte Vesicular , Humanos , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Linhagem Celular TumoralRESUMO
Acute lung injury (ALI) is a destructive respiratory disease characterized by alveolar structural destruction and excessive inflammation responses. Aerobic glycolysis of macrophages plays a crucial role in the pathophysiology of ALI. Previous studies have shown that the expression of the key rate-limiting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in inflammatory cells is significantly increased, which promotes an increase in the rate of glycolysis in inflammatory cells. However, little is known about the biological functions of PFKFB3 in macrophage inflammation and ALI. In this study, we identified that PFKFB3 is markedly increased in lipopolysaccharide (LPS)-induced ALI mice and macrophages. Knockdown of pfkfb3 attenuated LPS-induced glycolytic flux, decreased the release of pro-inflammatory cytokines, and inactivated NF-κB signaling pathway in macrophages. Subsequently, we found that dehydrocostus lactone (DL), a natural sesquiterpene lactone, significantly decreased both the mRNA and protein levels of PFKFB3. Furthermore, it reduced the release of inflammatory cytokines and inactivated NF-κB pathways in vitro. Accordingly, DL alleviated LPS-induced pulmonary edema and reduced the infiltration of inflammatory cells in mouse lung tissue. In summary, our study reveals the vital role of PFKFB3 in LPS-induced inflammation and discovers a novel molecular mechanism underlying DL's protective effects on ALI.
Assuntos
Lesão Pulmonar Aguda , Glicólise , Lipopolissacarídeos , Fosfofrutoquinase-2 , Sesquiterpenos , Animais , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lipopolissacarídeos/efeitos adversos , Glicólise/efeitos dos fármacos , Camundongos , Sesquiterpenos/farmacologia , Masculino , Lactonas/farmacologia , NF-kappa B/metabolismo , Células RAW 264.7 , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Citocinas/metabolismoRESUMO
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial lung disease. Clinical models to accurately evaluate the prognosis of IPF are currently lacking. This study aimed to construct an easy-to-use and robust prediction model for transplant-free survival (TFS) of IPF based on clinical and radiological information. METHODS: A multicenter prognostic study was conducted involving 166 IPF patients who were followed up for 3 years. The end point of follow-up was death or lung transplantation. Clinical information, lung function tests, and chest computed tomography (CT) scans were collected. Body composition quantification on CT was performed using 3D Slicer software. Risk factors in blood routine examination-radiology-pulmonary function (BRP) were identified by Cox regression and utilized to construct the "BRP Prognosis Model". The performance of the BRP model and the gender-age-physiology variables (GAP) model was compared using time-ROC curves, calibration curves, and decision curve analysis (DCA). Furthermore, histopathology fibrosis scores in clinical specimens were compared between the different risk stratifications identified by the BRP model. The correlations among body composition, lung function, serum inflammatory factors, and profibrotic factors were analyzed. RESULTS: Neutrophil percentage > 68.3%, pericardial adipose tissue (PAT) > 94.91 cm3, pectoralis muscle radiodensity (PMD) ≤ 36.24 HU, diffusing capacity of the lung for carbon monoxide/alveolar ventilation (DLCO/VA) ≤ 56.03%, and maximum vital capacity (VCmax) < 90.5% were identified as independent risk factors for poor TFS among patients with IPF. We constructed a BRP model, which showed superior accuracy, discrimination, and clinical practicability to the GAP model. Median TFS differed significantly among patients at different risk levels identified by the BRP model (low risk: TFS > 3 years; intermediate risk: TFS = 2-3 years; high risk: TFS ≈ 1 year). Patients with a high-risk stratification according to the BRP model had a higher fibrosis score on histopathology. Additionally, serum proinflammatory markers were positively correlated with visceral fat volume and infiltration. CONCLUSIONS: In this study, the BRP prognostic model of IPF was successfully constructed and validated. Compared with the commonly used GAP model, the BRP model had better performance and generalization with easily obtainable indicators. The BRP model is suitable for clinical promotion.
Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Prognóstico , Capacidade Vital , Biomarcadores , Fibrose , Estudos RetrospectivosRESUMO
Idiopathic pulmonary fibrosis (IPF) is considered an age-related disease. Age-related changes, along with other factors such as obesity, hormonal imbalances, and various metabolic disorders, lead to ectopic fat deposition (EFD). This accumulation of fat outside of its normal storage sites is associated with detrimental effects such as lipotoxicity, oxidative stress, inflammation, and insulin resistance. This narrative review provides an overview of the connection between ectopic and visceral fat deposition in aging, obesity, and IPF. It also elucidates the mechanism by which ectopic fat deposition in the airways and lungs, pericardium, skeletal muscles, and pancreas contributes to lung injury and fibrosis in patients with IPF, directly or indirectly. Moreover, the review discusses the impact of EFD on the severity of the disease, quality of life, presence of comorbidities, and overall prognosis in IPF patients. The review provides detailed information on recent research regarding representative lipid-lowering drugs, hypoglycemic drugs, and lipid-targeting drugs in animal experiments and clinical studies. This may offer new therapeutic directions for patients with IPF.
Assuntos
Fibrose Pulmonar Idiopática , Gordura Intra-Abdominal , Animais , Humanos , Gordura Intra-Abdominal/metabolismo , Qualidade de Vida , Obesidade/complicações , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/metabolismo , Envelhecimento , Lipídeos/uso terapêuticoRESUMO
This study uses a sigmoidal function to describe the plastic strain hardening of metallic materials, considering temperature and strain rate effects. The effectiveness of this approach is evaluated and systematically compared with other hardening laws. Incorporating temperature and strain rate effects into the parameters of this sigmoidal-type hardening law enables a more precise description and prediction of the plastic deformation of materials under different combinations of temperature and strain rate. The temperature effect is coupled using a simplified Arrhenius model, and the strain rate effect is coupled with a modified Johnson-Cook model. The sigmoidal-type hardening law is integrated with an asymmetric yield criterion to address complex behavior, such as anisotropy and strength differential effects. The calibration and validation of the constitutive model involve examining uniaxial tensile/compressive flow curves in various directions and biaxial tensile/compressive flow curves for diverse metallic alloys, proving the proposed model's broad applicability.
RESUMO
Infection with human papillomavirus (HPV) is a major risk factor for head and neck squamous cell carcinoma (HNSCC). The objective of this study is to investigate the gene expression profiles and signaling pathways that are specific to HPV-positive HNSCC (HPV+ HNSCC). Moreover, a competing endogenous RNA (ceRNA) network analysis was utilized to identify the core gene of HPV+ HNSCC and potential targeted therapeutic drugs. Transcriptome sequencing analysis identified 3,253 coding RNAs and 3,903 non-coding RNAs (ncRNAs) that exhibited preferentially expressed in HPV+ HNSCC. Four key signaling pathways were selected through pathway enrichment analysis. By combining ceRNA network and protein-protein interaction (PPI) network topology analysis, RNA Polymerase II Associated Protein 2 (RPAP2), which also exhibited high expression in HPV+ HNSCC based on the TCGA database, was identified as the hub gene. Gene set enrichment analysis (GSEA) results revealed RPAP2's involvement in various signaling pathways, encompassing basal transcription factors, ubiquitin-mediated proteolysis, adherens junction, other glycan degradation, ATP-binding cassette (ABC) transporters, and oglycan biosynthesis. Five potential small molecule targeted drugs (enzastaurin, brequinar, talinolol, phenylbutazone, and afuresertib) were identified using the cMAP database, with enzastaurin showing the highest affinity for RPAP2. Cellular functional experiments confirmed the inhibitory effect of enzastaurin on cell viability of HPV+ HNSCC and RPAP2 expression levels. Additionally, enzastaurin treatment suppressed the expression levels of the top-ranked long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA) in the ceRNA network. This study based on the ceRNA network provides valuable insights into the molecular mechanisms and potential therapeutic strategies for HPV+ HNSCC, and provide theoretical basis for the exploration of HPV+ HNSCC biomarkers and the development of targeted drugs.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Infecções por Papillomavirus , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Transcriptoma/genética , RNA Endógeno Competitivo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/genética , Perfilação da Expressão Gênica , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Proteínas de Transporte/genéticaRESUMO
Background: T cell exhaustion in the tumor microenvironment has been demonstrated as a substantial contributor to tumor immunosuppression and progression. However, the correlation between T cell exhaustion and osteosarcoma (OS) remains unclear. Methods: In our present study, single-cell RNA-seq data for OS from the GEO database was analysed to identify CD8+ T cells and discern CD8+ T cell subsets objectively. Subgroup differentiation trajectory was then used to pinpoint genes altered in response to T cell exhaustion. Subsequently, six machine learning algorithms were applied to develop a prognostic model linked with T cell exhaustion. This model was subsequently validated in the TARGETs and Meta cohorts. Finally, we examined disparities in immune cell infiltration, immune checkpoints, immune-related pathways, and the efficacy of immunotherapy between high and low TEX score groups. Results: The findings unveiled differential exhaustion in CD8+ T cells within the OS microenvironment. Three genes related to T cell exhaustion (RAD23A, SAC3D1, PSIP1) were identified and employed to formulate a T cell exhaustion model. This model exhibited robust predictive capabilities for OS prognosis, with patients in the low TEX score group demonstrating a more favorable prognosis, increased immune cell infiltration, and heightened responsiveness to treatment compared to those in the high TEX score group. Conclusion: In summary, our research elucidates the role of T cell exhaustion in the immunotherapy and progression of OS, the prognostic model constructed based on T cell exhaustion-related genes holds promise as a potential method for prognostication in the management and treatment of OS patients.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Análise da Expressão Gênica de Célula Única , Exaustão das Células T , Osteossarcoma/genética , Neoplasias Ósseas/genética , Imunidade , Microambiente Tumoral/genética , Proteínas de Ligação a DNA , Enzimas Reparadoras do DNARESUMO
OBJECTIVE: The presence of complex components in Chinese herbal medicine (CHM) hinders identification of the primary active substances and understanding of pharmacological principles. This study was aimed at developing a big-data-based, knowledge-driven in silico algorithm for predicting central components in complex CHM formulas. METHODS: Network pharmacology (TCMSP) and clinical (GEO) databases were searched to retrieve gene targets corresponding to the formula ingredients, herbal components, and specific disease being treated. Intersections were determined to obtain disease-specific core targets, which underwent further GO and KEGG enrichment analyses to generate non-redundant biological processes and molecular targets for the formula and each component. The ratios of the numbers of biological and molecular events associated with a component were calculated with a formula, and entropy weighting was performed to obtain a fitting score to facilitate ranking and improve identification of the key components. The established method was tested on the traditional CHM formula Danggui Sini Decoction (DSD) for gastric cancer. Finally, the effects of the predicted critical component were experimentally validated in gastric cancer cells. RESULTS: An algorithm called Chinese Herb Medicine-Formula vs. Ingredients Efficacy Fitting & Prediction (CHM-FIEFP) was developed. Ferulic acid was identified as having the highest fitting score among all tested DSD components. The pharmacological effects of ferulic acid alone were similar to those of DSD. CONCLUSIONS: CHM-FIEFP is a promising in silico method for identifying pharmacological components of CHM formulas with activity against specific diseases. This approach may also be practical for solving other similarly complex problems. The algorithm is available at http://chm-fiefp.net/.
RESUMO
BACKGROUND: LRRC59 is a leucine-rich repeats-containing protein located in the endoplasmic reticulum (ER), it serves as a prognostic marker in several cancers. However, there has been no systematic analysis of its role in the tumor immune microenvironment, nor its predictive value of prognosis and immunotherapy response in different cancers. METHODS: A comprehensive pan-cancer analysis of LRRC59 was conducted from various databases to elucidate the associations between its expression and the prognosis of cancer, genetic alterations, tumor metabolism, and tumor immunity. Additionally, further functional assays were performed in hepatocellular carcinoma (HCC) to study its biological role in regulating cell proliferation, migration, apoptosis, cell cycle arrest, and sensitivity to immunotherapy. RESULTS: The pan-cancer analysis reveals a significant upregulation of LRRC59 in pan-cancer, and its overexpression is correlated with unfavorable prognosis in cancer patients. LRRC59 is negatively correlated with immune cell infiltration, tumor purity estimation, and immune checkpoint genes. Finally, the validation in HCC demonstrates LRRC59 is significantly overexpressed in cancer tissue and cell lines, and its knockdown inhibits cell proliferation and migration, promotes cell apoptosis, induces cell cycle arrest, and enhances the sensitivity to immunotherapy in HCC cells. CONCLUSIONS: LRRC59 emerges as a novel potential prognostic biomarker across malignancies, offering promise for anti-cancer drugs and immunotherapy.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Prognóstico , Linhagem Celular Tumoral , Proliferação de Células/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Apoptose/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Movimento Celular/genética , ImunoterapiaRESUMO
The vast majority of data obtained from sequence analysis of influenza A viruses (IAVs) have revealed that nonstructural 1 (NS1) proteins from H1N1 swine, H3N8 equine, H3N2 avian and the correspondent subtypes from dogs have a conserved four C-terminal amino acid motif when independent cross-species transmission occurs between these species. To test the influence of the C-terminal amino acid motifs of NS1 protein on the replication and virulence of IAVs, we systematically generated 7 recombinants, which carried naturally truncated NS1 proteins, and their last four C-terminal residues were replaced with PEQK and SEQK (for H1N1), EPEV and KPEI (for H3N8) and ESEV and ESEI (for H3N2) IAVs. Another recombinant was generated by removing the C-terminal residues by reverse genetics. Remarkably, the ESEI and KPEI motifs circulating in canines largely contributed efficient replication in cultured cells and these had enhanced virulence. In contrast, the avian ESEV motif was only responsible for high pathogenicity in mice. We examined the effects of these motifs upon interferon (IFN) induction. The 7 mutant viruses replicated in vitro in an IFN-independent manner, and the canine SEQK motif was able to induced higher levels of IFN-ß in human cell lines. These findings shed further new light on the role of the four C-terminal residues in replication and virulence of IAVs and suggest that these motifs can modulate viral replication in a species-specific manner.
Assuntos
Motivos de Aminoácidos , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Proteínas não Estruturais Virais , Replicação Viral , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Animais , Cães , Virulência , Camundongos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H1N1/fisiologia , Infecções por Orthomyxoviridae/virologia , Humanos , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Doenças do Cão/virologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus da Influenza A Subtipo H3N8/genética , Vírus da Influenza A Subtipo H3N8/patogenicidade , FemininoRESUMO
The emergence of SARS-CoV-2-Spike mutants not only enhances viral infectivity but also lead to treatment failure. Gaining a comprehensive understanding of the molecular binding mode between the mutant SARS-CoV-2-Spike and human ACE2 receptor is crucial for therapeutic development against this virus. Building upon our previous predictions and verifications regarding heightened viral infectivity of six potential SARS-CoV-2-Spike mutants, this study aims to further investigate the potential disruption of the interaction between these mutants and ACE2 by quercetin, a Chinese herbal compound. Molecular docking and dynamics simulations results reveal that the binding sites of quercetin particularly enriched around a specific "cavity" at the interface of Spike/ACE2 complex, indicating a favorable region for quercetin to interfere with Spike/ACE2 interaction. Virus infection assay confirms that quercetin not only attenuates wild-type virus infectivity but also suppresses the infectivity of all six tested SARS-CoV-2-Spike mutants. Therefore, quercetin represents a promising therapeutic candidate against both wild-type and potential future variants of SARS-CoV-2 exhibiting high viral infectivity.
RESUMO
Aims: Reactive oxygen species (ROS) play a vital role in conveying the cytotoxicity and resistance of most chemotherapy drugs. Therefore, gaining a comprehensive understanding of the intricate activities against oxidative stress in cancer cells may provide valuable insights into the discovery of common mechanisms underlying chemoresistance. Results: We identified a novel long noncoding RNA (lncRNA), designated fluorouracil-associated transcript-1 (FUAT1), as a key nongenetic player involved in ROS-mediated intrinsic chemoresistance by employing a unique screening strategy based on transcriptome sequencing (RNA-Seq) technology. To investigate the precise role of the FUAT1 regulatory axis in chemoresistance, we conducted a series of in vitro and in vivo assays including gain/loss-of-function and rescue experiments. Mechanistically, our findings revealed that FUAT1 upregulates Tensin 4 (TNS4) by sponging miR-140-5p, which allows gastric cancer cells to survive chemotherapy by inhibiting ROS-mediated apoptosis. Clinically, we observed that the FUAT1/TNS4 regulatory axis is negatively associated with overall survival and progression-free survival among gastric and colon cancer patients treated with 5-fluorouracil adjuvant chemotherapy. Innovation: We devised a novel screening strategy distinct from conventional approaches using drug-resistant strains. Through this approach, we identified the previously unrecognized lncRNA FUAT1/TNS4 axis that plays a critical role in ROS-mediated intrinsic chemoresistance. Conclusions: Our findings shed light on fundamental adaptive mechanisms employed by cancer cells to respond to chemotherapy and provide new insights into developing strategies aiming at overcoming chemoresistance.
RESUMO
Background: IBSP is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family that plays a vital role in bone formation, renewal and repair. Emerging evidence revealed that IBSP participated in the tumorigenesis and progression in some cancers. However, its significance in tumour prognosis and immunotherapy is still unknown. Methods: In the current study, we studied the role of IBSP in tumorigenesis, tumor diagnosis, genomic heterogeneity, methylation modifications, immune infiltration, and therapy response in pan-cancer. In addition, we constructed a risk score model to assessed the prognostic classification efficiency of IBSP using the co-expression genes of IBSP in osteosarcoma (OS), and analyzed the expression and role of IBSP in OS through a series of assays in vitro. Results: IBSP was upregulated in various cancers compared to the paired normal tissues, and it was strongly correlated with the prognosis, pathological stage, diagnostic accuracy, genomic heterogeneity, methylation modification, immune infiltration, immune and checkpoint. Moreover, the predictive model we established in combination with the clinical characteristics of OS patients showed high survival predictive power in these individuals. The assays in vitro showed that IBSP promoted the proliferation, migration and invasion of OS cells, which further confirmed IBSP's role in cancers. Conclusions: Our research revealed the multifunctionality of IBSP in the tumorigenesis, progression and therapy in various cancers, which demonstrated that IBSP may serve as a potential prognostic biomarker and a novel immunotherapy target in pan-cancer.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Prognóstico , Osteossarcoma/genética , Osteossarcoma/terapia , Biomarcadores , Carcinogênese , Transformação Celular Neoplásica , Imunoterapia , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapiaRESUMO
Tumour cells mainly generate energy from glycolysis, which is commonly coupled with lactate production even under normoxic conditions. As a critical lactate transporter, monocarboxylate transporter 4 (MCT4) is highly expressed in glycolytic tissues, such as muscles and tumours. Overexpression of MCT4 is associated with poor prognosis for patients with various tumours. However, how MCT4 function is post-translationally regulated remains largely unknown. Taking advantage of human lung adenocarcinoma (LUAD) cells, this study revealed that MCT4 can be polyubiquitylated in a nonproteolytic manner by SYVN1 E3 ubiquitin ligase. The polyubiquitylation facilitates the localization of MCT4 into the plasma membrane, which improves lactate export by MCT4; in accordance, metabolism characterized by reduced glycolysis and lactate production is effectively reprogrammed by SYVN1 knockdown, which can be reversed by MCT4 overexpression. Biologically, SYVN1 knockdown successfully compromises cell proliferation and tumour xenograft growth in mouse models that can be partially rescued by overexpression of MCT4. Clinicopathologically, overexpression of SYVN1 is associated with poor prognosis in patients with LUAD, highlighting the importance of the SYVN1-MCT4 axis, which performs metabolic reprogramming during the progression of LUAD.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Membrana Celular/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
ABBREVIATIONS: CC: Closeness centrality; OS: Osteosarcoma; TCM: Traditional Chinese medicine; NSCLC: Non-small cell lung cancer; DC: Degree centrality; CHM: Chinese herb medicine; BC: Betweenness centrality.
Assuntos
Neoplasias Ósseas , Carcinoma Pulmonar de Células não Pequenas , Fallopia japonica , Neoplasias Pulmonares , Osteossarcoma , Receptores ErbB , Humanos , Proteínas Proto-Oncogênicas c-akt , Transdução de SinaisRESUMO
BACKGROUND: Colon cancer (CC) ranks the second highest mortality rate among malignant tumors worldwide, and the current mainstream treatment regimens are not very effective. The unique efficacy of Chinese herb medicine (CHM) for cancer has recently attracted increasing attention. Cinnamomi Ramulus (CR), as a classic CHM, has been widely used in the treatment of a variety of diseases for hundreds of years in China, but its specific pharmacological mechanism against CC needs to be fully evaluated. METHODS: TCMSP and China National Knowledge Infrastructure database were utilized to predict the candidate ingredients of CR, and TCMSP and SwissTargetPrediction database were also employed to predict the drug targets of the candidate ingredients from CR. We subsequently evaluated the therapeutic effect of CR by orally administrating it on CC-bearing mice. Next, we further identified the potential CC-related targets by using Gene Expression Omnibus (GEO) database. Based on these obtained targets, the drug/disease-target PPI networks were constructed using Bisogenet plugin of Cytoscape. The potential core therapeutic targets were then identified through topological analysis using CytoNCA plugin. GO and KEGG enrichment analyses were performed to predict the underlying mechanism of CR against CC. Furthermore, these in silico analysis results were validated by a series of cellular functional and molecular biological assays. UPLC-MS/MS method and molecular docking analysis were employed to identify the potential key components from CR. RESULTS: In this study, we firstly found that CR has potential therapeutic effect on cancer. Then, oral administration of CR could inhibit the growth of CC cells in C57BL/6 mice, while inhibiting the viability and motility of CC cells in vitro. We obtained 111 putative core therapeutic targets of CR. Subsequent enrichment analysis on these targets showed that CR could induce apoptosis and cell cycle arrest in CC cells by blocking Akt/ERK signaling pathways, which was further experimentally verified. We identified 5 key components from the crude extract of CR, among which taxifolin was found most likely to be the key active component against CC. CONCLUSIONS: Our results show that CR as well as its active component taxifolin holds great potential in treatment of CC.
RESUMO
Huangqi Guizhi Wuwu Decoction (HGWD), as a classic Chinese herbal decoction, has been widely used in treating various diseases for hundreds of years. However, systematically elucidating its mechanisms of action remains a great challenge to the field. In this study, taking advantage of the network pharmacology approach, we discovered a potential new use of HGWD for patients with colon cancer (CC). Our in vivo result showed that orally administered HGWD markedly inhibited the growth of CC xenografts in mice. The subsequent enrichment analyses for the core therapeutic targets revealed that HGWD could affect multiple biological processes involving CC growth, such as metabolic reprogramming, apoptosis and immune regulation, through inhibiting multiple cell survival-related signalings, including MAPK and PI3K-AKT pathways. Notably, these in silico analysis results were most experimentally verified by a series of in vitro assays. Furthermore, our results based on serum metabolomics showed that the lipid metabolic pathways, including fatty acid biosynthesis and cholesterol metabolism, play key roles in delivery of the anti-CC effect of HGWD on tumor-bearing mice, and that cytochrome P450 family 2 subfamily E member 1 (CYP2E1) is a potential therapeutic target. Together, our integrated approach reveals a therapeutic effect of HGWD on CC, providing a valuable insight into developing strategies to predict and interpret the mechanisms of action for Chinese herbal decoctions.
RESUMO
Minichromosome maintenance proteins (MCMs) are considered to be essential factors coupling DNA replication to both cell cycle progression and checkpoint regulation. Previous studies have shown that dysregulation of MCMs are implicated in tumorigenesis of lung cancer. However, the distinct expression/mutation patterns and prognostic values of MCMs in lung cancer have yet to be systematically elucidated. In the present study, we analyzed the transcriptional levels, mutations, and prognostic value of MCM1-10 in non-small cell lung cancer (NSCLC) patients using multiple bioinformatics tools, including ONCOMINE, GEPIA, Kaplan-Meier Plotter, cBioPortal, and GESA. The analysis results from GEPIA dataset showed that MCM2/4/10 was significantly high expressed in both lung adenocarcinoma (LUAD) and squamous cell lung carcinomas (LUSCs). Meanwhile, the expression levels of MCM2/4/6/7/8 were associated with advanced tumor stages. Subsequent survival analysis using the Kaplan-Meier Plotter indicated that high expression levels of MCM1/2/3/4/5/6/7/8/10 were associated with worse overall survival (OS), while high expression level of MCM9 predicted better OS in these patients. Furthermore, we experimentally validated overexpression of MCM2 and MCM4 in NSCLC, thus the results from this study support a view that they may serve as potential prospective biomarkers to identify high-risk subgroups of NSCLC patients.
RESUMO
Danggui Sini Decoction (DSD), a classic Chinese herb medicine (CHM) formula, has been used to treat various diseases in China for centuries. However, it remains challenging to reveal its mechanism of action through conventional pharmacological methods. Here, we first explored the mechanism of action of DSD with the assistance of network pharmacology and bioinformatic analysis tools, and found a potential therapeutic effect of DSD on cancer. Indeed, our in vivo experiment demonstrated that oral administration of DSD could significantly inhibit the growth of xenografted gastric cancer (GC) on mice. The subsequent enrichment analyses for 123 candidate core targets evacuated from the drug/disease-target protein-protein interaction network showed that DSD could affect the key biological processes involving the survival and growth of GC cells, such as apoptosis and cell cycle, and the disturbance of these biological processes is likely attributed to the simultaneous inhibition of multiple signaling pathways, including PI3K/Akt, MAPK, and p53 pathways. Notably, these in silico results were further validated by a series of cellular functional and molecular biological assays in vitro. Moreover, molecular docking analysis suggested an important role of MCM2 in delivering the pharmacological activity of DSD against GC. Together, these results indicate that our network pharmacology and bioinformatics-guided approach is feasible and useful in exploring not only the mechanism of action, but also the "new use" of the old CHM formula.
RESUMO
The outbreak of COVID-19 raises an urgent need for the therapeutics to contain the emerging pandemic. However, no effective treatment has been found for SARS-CoV-2 infection to date. Here, we identified puerarin (PubChem CID: 5281807), quercetin (PubChem CID: 5280343) and kaempferol (PubChem CID: 5280863) as potential compounds with binding activity to ACE2 by using Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Molecular docking analysis showed that puerarin and quercetin exhibit good binding affinity to ACE2, which was validated by surface plasmon resonance (SPR) assay. Furthermore, SPR-based competition assay revealed that puerarin and quercetin could significantly affect the binding of viral S-protein to ACE2 receptor. Notably, quercetin could also bind to the RBD domain of S-protein, suggesting not only a receptor blocking, but also a virus neutralizing effect of quercetin on SARS-CoV-2. The results from network pharmacology and bioinformatics analysis support a view that quercetin is involved in host immunomodulation, which further renders it a promising candidate against COVID-19. Moreover, given that puerarin is already an existing drug, results from this study not only provide insight into its action mechanism, but also propose a prompt application of it on COVID-19 patients for assessing its clinical feasibility.