Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 538(7623): 99-103, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27680698

RESUMO

Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are crucial for many forms of neuronal plasticity, including structural long-term potentiation (sLTP), which is a correlate of an animal's learning. However, it is unknown whether BDNF release and TrkB activation occur during sLTP, and if so, when and where. Here, using a fluorescence resonance energy transfer-based sensor for TrkB and two-photon fluorescence lifetime imaging microscopy, we monitor TrkB activity in single dendritic spines of CA1 pyramidal neurons in cultured murine hippocampal slices. In response to sLTP induction, we find fast (onset < 1 min) and sustained (>20 min) activation of TrkB in the stimulated spine that depends on NMDAR (N-methyl-d-aspartate receptor) and CaMKII signalling and on postsynaptically synthesized BDNF. We confirm the presence of postsynaptic BDNF using electron microscopy to localize endogenous BDNF to dendrites and spines of hippocampal CA1 pyramidal neurons. Consistent with these findings, we also show rapid, glutamate-uncaging-evoked, time-locked BDNF release from single dendritic spines using BDNF fused to superecliptic pHluorin. We demonstrate that this postsynaptic BDNF-TrkB signalling pathway is necessary for both structural and functional LTP. Together, these findings reveal a spine-autonomous, autocrine signalling mechanism involving NMDAR-CaMKII-dependent BDNF release from stimulated dendritic spines and subsequent TrkB activation on these same spines that is crucial for structural and functional plasticity.


Assuntos
Comunicação Autócrina , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Espinhas Dendríticas/ultraestrutura , Ativação Enzimática , Feminino , Transferência Ressonante de Energia de Fluorescência , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde , Células HeLa , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Humanos , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Microscopia de Fluorescência por Excitação Multifotônica , Densidade Pós-Sináptica/metabolismo , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Técnicas de Cultura de Tecidos
2.
J Neurophysiol ; 121(2): 609-619, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517040

RESUMO

Hippocampal mossy fiber axons simultaneously activate CA3 pyramidal cells and stratum lucidum interneurons (SLINs), the latter providing feedforward inhibition to control CA3 pyramidal cell excitability. Filopodial extensions of giant boutons of mossy fibers provide excitatory synaptic input to the SLIN. These filopodia undergo extraordinary structural plasticity causally linked to execution of memory tasks, leading us to seek the mechanisms by which activity regulates these synapses. High-frequency stimulation of the mossy fibers induces long-term depression (LTD) of their calcium-permeable AMPA receptor synapses with SLINs; previous work localized the site of induction to be postsynaptic and the site of expression to be presynaptic. Yet, the underlying signaling events and the identity of the retrograde signal are incompletely understood. We used whole cell recordings of SLINs in hippocampal slices from wild-type and mutant mice to explore the mechanisms. Genetic and pharmacologic perturbations revealed a requirement for both the receptor tyrosine kinase TrkB and its agonist, brain-derived neurotrophic factor (BDNF), for induction of LTD. Inclusion of inhibitors of Trk receptor kinase and PLC in the patch pipette prevented LTD. Endocannabinoid receptor antagonists and genetic deletion of the CB1 receptor prevented LTD. We propose a model whereby release of BDNF from mossy fiber filopodia activates TrkB and PLCγ1 signaling postsynaptically within SLINs, triggering synthesis and release of an endocannabinoid that serves as a retrograde signal, culminating in reduced glutamate release. Insights into the signaling pathways by which activity modifies function of these synapses will facilitate an understanding of their contribution to the local circuit and behavioral consequences of hippocampal granule cell activity. NEW & NOTEWORTHY We investigated signaling mechanisms underlying plasticity of the hippocampal mossy fiber filopodial synapse with interneurons in stratum lucidum. High-frequency stimulation of the mossy fibers induces long-term depression of this synapse. Our findings are consistent with a model in which brain-derived neurotrophic factor released from filopodia activates TrkB of a stratum lucidum interneuron; the ensuing activation of PLCγ1 induces synthesis of an endocannabinoid, which provides a retrograde signal leading to reduced release of glutamate presynaptically.


Assuntos
Região CA3 Hipocampal/metabolismo , Interneurônios/metabolismo , Depressão Sináptica de Longo Prazo , Fibras Musgosas Hipocampais/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor trkB/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/fisiologia , Endocanabinoides/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Fibras Musgosas Hipocampais/fisiologia , Fosfolipase C gama/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Transdução de Sinais
3.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-34949685

RESUMO

Insight into the cellular and circuit mechanisms underlying development of temporal lobe epilepsy (TLE) will provide a foundation for improved therapies. We studied a model in which an episode of prolonged seizures is followed by recovery lasting two weeks before emergence of spontaneous recurrent seizures. We focused on the interval between the prolonged seizures and the late onset recurrent seizures. We investigated the hippocampal mossy fiber CA3 pyramidal cell microcircuit in models spanning in vitro, in vivo, and ex vivo preparations. Expression of channelrhodopsin-2 in the dentate granule cells of DGC ChR mice enabled the selective activation of mossy fiber axons. In vivo studies revealed marked potentiation of mossy fiber evoked field potentials in hippocampal CA3 beginning within hours following seizures, a potentiation which persisted at least 7 d. Stimulation of mossy fibers in hippocampal slices in vitro using patterns of activity mimicking seizures induced LTP not only of the monosynaptic EPSC but also of the disynaptic IPSC of CA3 pyramidal cells. Ex vivo studies of slices isolated following seizures revealed evidence of LTP of mossy fiber evoked EPSC and disynaptic IPSC of CA3 pyramidal cells. We suggest that activation of dentate granule cells during seizures induces these plasticities in vivo and the retained balance of synaptic excitation and inhibition limits excessive activation of CA3 pyramidal cells, thereby protecting animals from spontaneous recurrent seizures at this interval following status epilepticus.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Potenciação de Longa Duração , Camundongos , Fibras Musgosas Hipocampais , Células Piramidais
4.
J Neurosci ; 30(18): 6188-96, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20445044

RESUMO

The BDNF receptor, TrkB, is critical to limbic epileptogenesis, but the responsible downstream signaling pathways are unknown. We hypothesized that TrkB-dependent activation of phospholipase Cgamma1 (PLCgamma1) signaling is the key pathway and tested this in trkB(PLC/PLC) mice carrying a mutation (Y816F) that uncouples TrkB from PLCgamma1. Biochemical measures revealed activation of both TrkB and PLCgamma1 in hippocampi in the pilocarpine and kindling models in wild-type mice. PLCgamma1 activation was decreased in hippocampi isolated from trkB(PLC/PLC) compared with control mice. Epileptogenesis assessed by development of kindling was inhibited in trkB(PLC/PLC) compared with control mice. Long-term potentiation of the mossy fiber-CA3 pyramid synapse was impaired in slices of trkB(PLC/PLC) mice. We conclude that TrkB-dependent activation of PLCgamma1 signaling is an important molecular mechanism of limbic epileptogenesis. Elucidating signaling pathways activated by a cell membrane receptor in animal models of CNS disorders promises to reveal novel targets for specific and effective therapeutic intervention.


Assuntos
Epilepsia/fisiopatologia , Hipocampo/fisiologia , Fosfolipase C gama/fisiologia , Receptor trkB/fisiologia , Transdução de Sinais/fisiologia , Animais , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/genética , Hipocampo/metabolismo , Excitação Neurológica/genética , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Transgênicos , Mutação , Fosfolipase C gama/biossíntese , Pilocarpina , Receptor trkB/biossíntese , Receptor trkB/genética , Transdução de Sinais/genética , Sinapses/metabolismo
5.
Epilepsy Res ; 178: 106816, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34808484

RESUMO

We set out to establish a novel model of temporal lobe epilepsy (TLE) in a mouse. We sought to induce TLE through the injection of kainic acid (KA) into the tail vein with subsequent development of status epilepticus (SE). Using C57BL/6 mice, we implanted hippocampal EEG recording electrodes before or after injection of KA or phosphate buffered saline (PBS). Video and EEG analysis were conducted to evaluate for SE and development of recurrent seizures, the hallmark of TLE. All mice injected with KA developed SE while those who were injected with PBS did not. Of the animals injected with KA monitored for recurrent seizures following SE, 33% developed spontaneous recurrent seizures while those injected with PBS did not. Injection of KA through the tail vein of a mouse reliably and rapidly induces SE which remits spontaneously and leads to the development of TLE in a subset of mice.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Animais , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Hipocampo , Ácido Caínico/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente
6.
Nat Neurosci ; 5(6): 533-8, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11992119

RESUMO

A high density of Na+ channels in the axon hillock, or initial segment, is believed to determine the threshold for action potential initiation in neurons. Here we report evidence for an alternative mechanism that lowers the threshold in the axon. We investigated properties and distributions of ion channels in outside-out patches from axons and somata of layer 5 pyramidal neurons in rat neocortical slices. Na+ channels in axonal patches (<30 microm from the soma) were activated by 7 mV less depolarization than were somatic Na+ channels. A-type K+ channels, which were prominent in somatic and dendritic patches, were rarely seen in axonal patches. We incorporated these findings into numerical simulations which indicate that biophysical properties of axonal channels, rather than a high density of channels in the initial segment, are most likely to determine the lowest threshold for action potential initiation.


Assuntos
Axônios/fisiologia , Canais de Potássio/fisiologia , Células Piramidais/fisiologia , Canais de Sódio/fisiologia , Potenciais de Ação/fisiologia , Animais , Dendritos/metabolismo , Eletrofisiologia , Técnicas In Vitro , Neocórtex/citologia , Neocórtex/fisiologia , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
7.
Neuron ; 71(6): 1116-26, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21943607

RESUMO

The presence of zinc in glutamatergic synaptic vesicles of excitatory neurons of mammalian cerebral cortex suggests that zinc might regulate plasticity of synapses formed by these neurons. Long-term potentiation (LTP) is a form of synaptic plasticity that may underlie learning and memory. We tested the hypothesis that zinc within vesicles of mossy fibers (mf) contributes to mf-LTP, a classical form of presynaptic LTP. We synthesized an extracellular zinc chelator with selectivity and kinetic properties suitable for study of the large transient of zinc in the synaptic cleft induced by mf stimulation. We found that vesicular zinc is required for presynaptic mf-LTP. Unexpectedly, vesicular zinc also inhibits a form of postsynaptic mf-LTP. Because the mf-CA3 synapse provides a major source of excitatory input to the hippocampus, regulating its efficacy by these dual actions, vesicular zinc is critical to proper function of hippocampal circuitry in health and disease.


Assuntos
Potenciação de Longa Duração/efeitos dos fármacos , Fibras Musgosas Hipocampais/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Zinco/farmacologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions , Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Knockout , Estrutura Molecular , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/ultraestrutura , Piridinas/síntese química , Piridinas/farmacologia , Ácidos Sulfanílicos/síntese química , Ácidos Sulfanílicos/farmacologia , Zinco/química
8.
Neuron ; 57(4): 546-58, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18304484

RESUMO

The receptor tyrosine kinase, TrkB, is critical to diverse functions of the mammalian nervous system in health and disease. Evidence of TrkB activation during epileptogenesis in vivo despite genetic deletion of its prototypic neurotrophin ligands led us to hypothesize that a non-neurotrophin, the divalent cation zinc, can transactivate TrkB. We found that zinc activates TrkB through increasing Src family kinase activity by an activity-regulated mechanism independent of neurotrophins. One subcellular locale at which zinc activates TrkB is the postsynaptic density of excitatory synapses. Exogenous zinc potentiates the efficacy of the hippocampal mossy fiber (mf)-CA3 pyramid synapse by a TrkB-requiring mechanism. Long-term potentiation of this synapse is impaired by deletion of TrkB, inhibition of TrkB kinase activity, and by CaEDTA, a selective chelator of zinc. The activity-dependent activation of synaptic TrkB in a neurotrophin-independent manner provides a mechanism by which this receptor can regulate synaptic plasticity.


Assuntos
Fibras Musgosas Hipocampais/fisiologia , Células Piramidais/fisiologia , Receptor trkB/biossíntese , Sinapses/metabolismo , Ativação Transcricional/fisiologia , Zinco/farmacologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Fibras Musgosas Hipocampais/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Receptor trkB/genética , Sinapses/efeitos dos fármacos , Sinapses/genética , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA