Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2402854, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087384

RESUMO

Bacterial infections are closely correlated with the genesis and progression of cancer, and the elimination of cancer-related bacteria may improve the efficacy of cancer treatment. However, the combinatorial therapy that utilizes two or more chemodrugs will increase potential adverse effects. Image-guided photodynamic therapy is a highly precise and potential therapy to treat tumor and microbial infections. Herein, four donor-acceptor-π-bridge-acceptor (D-A-π-A) featured near-infrared (NIR) aggregation-induced emission luminogens (AIEgens) (TQTPy, TPQTPy, TQTC, and TPQTC) with type I and type II reaction oxygen species (ROS) generation capabilities are synthesized. Notably, TQTPy shows mitochondria targeted capacity, the best ROS production efficiency, long-term tumor retention capacity, and more importantly, the three-in-one fluorescence imaging guided therapy against both tumor and microbial infections. Both in vitro and in vivo results validate that TQTPy performs well in practical biomedical application in terms of NIR-fluorescence imaging-guided photodynamic cancer diagnosis and treatment. Moreover, the amphiphilic and positively charged TQTPy is able to specific and ultrafast discrimination and elimination of Gram-positive (G+) Staphylococcus aureus from Gram-negative (G-) Escherichia coli and normal cells. This investigation provides an instructive way for the construction of three-in-one treatment for image-guided photodynamic cancer therapy and bacteria elimination.

2.
Mol Pharm ; 20(10): 5214-5225, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37733628

RESUMO

Chemotherapeutic agents targeting energy metabolism have not achieved satisfactory results in different types of tumors. Herein, we developed an RNA interference (RNAi) method against adenosine triphosphate (ATP) by constructing an interfering plasmid-expressing ATP-binding RNA aptamer, which notably inhibited the growth of prostate cancer cells through diminishing the availability of cytoplasmic ATP and impairing the homeostasis of energy metabolism, and both glycolysis and oxidative phosphorylation were suppressed after RNAi treatment. Further identifying the mechanism underlying the effects of ATP aptamer, we surprisingly found that it markedly reduced the activity of membrane ionic channels and membrane potential which led to the dysfunction of mitochondria, such as the decrease of mitochondrial number, reduction in the respiration rate, and decline of mitochondrial membrane potential and ATP production. Meanwhile, the shortage of ATP impeded the formation of lamellipodia that are essential for the movement of cells, consequently resulting in a significant reduction of cell migration. Both the downregulation of the phosphorylation of AMP-activated protein kinase (AMPK) and endoplasmic reticulum kinase (ERK) and diminishing of lamellipodium formation led to cell apoptosis as well as the inhibition of angiogenesis and invasion. In conclusion, as the first RNAi modality targeting the blocking of ATP consumption, the present method can disturb the respiratory chain and ATP pool, which provides a novel regime for tumor therapies..


Assuntos
Trifosfato de Adenosina , Neoplasias da Próstata , Masculino , Humanos , Trifosfato de Adenosina/metabolismo , Interferência de RNA , Metabolismo Energético , Glicólise , Fosforilação Oxidativa , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia
3.
Int J Cancer ; 150(9): 1525-1536, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985768

RESUMO

The acquisition of ectopic type I fibroblast growth factor receptor (FGFR1) is a common feature of prostate cancer (PCa), the most frequently diagnostic cancer in men. However, how ectopic FGFR1 contributes to PCa progression is not well understood. In our study we showed that ablation of FGFR1 in DU145 human PCa cells changed the cell metabolite profile. Among the changes, the choline metabolism profile was the most significantly altered by FGFR1 ablation. Detailed characterization revealed that ablation of FGFR1 altered expression of multiple choline metabolism enzymes. Among the changes of FGFR1-regulated choline metabolic enzymes, downregulation of choline kinase α (CHKA) is the most prominent changes, which phosphorylates free choline to phosphocholine. Ablation of FGFR1 blunted the activity of choline to promote cell proliferation and survival. Furthermore, depletion of CHKA compromised FGF signaling activity in DU145 cells. We also first time demonstrated that FGFR1 formed complex with CHKA, suggesting that FGFR1 regulated CHKA at the posttranslational level. Together with the previous report that ectopic FGFR1 contributes to PCa progression and metastasis, our results here unravel a novel mechanism by which FGFR1 promotes PCa progression by dysregulating choline metabolism, and that the crosstalk between FGFR1-choline metabolism can be a potential target for managing PCa progression.


Assuntos
Colina , Neoplasias da Próstata , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Linhagem Celular Tumoral , Proliferação de Células , Colina/metabolismo , Humanos , Masculino , Próstata/patologia , Neoplasias da Próstata/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
4.
J Cell Mol Med ; 23(2): 1059-1071, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30461198

RESUMO

Fibroblast growth factor 21 (FGF21) is important in glucose, lipid homeostasis and insulin sensitivity. However, it remains unknown whether FGF21 is involved in insulin expression and secretion that are dysregulated in type 2 diabetes mellitus (T2DM). In this study, we found that FGF21 was down-regulated in pancreatic islets of db/db mice, a mouse model of T2DM, along with decreased insulin expression, suggesting the possible involvement of FGF21 in maintaining insulin homeostasis and islet ß-cell function. Importantly, FGF21 knockout exacerbated palmitate-induced islet ß-cell failure and suppression of glucose-stimulated insulin secretion (GSIS). Pancreatic FGF21 overexpression significantly increased insulin expression, enhanced GSIS, improved islet morphology and reduced ß-cell apoptosis in db/db mice. Mechanistically, FGF21 promoted expression of insulin gene transcription factors and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, the major regulators of insulin secretion, as well as activating phosphatidylinositol 3-kinase (PI3K)/Akt signaling in islets of db/db mice. In addition, pharmaceutical inhibition of PI3K/Akt signaling effectively suppressed FGF21-induced expression of insulin gene transcription factors and SNARE proteins, suggesting an essential role of PI3K/Akt signaling in FGF21-induced insulin expression and secretion. Taken together, our results demonstrate a protective role of pancreatic FGF21 in T2DM mice through inducing PI3K/Akt signaling-dependent insulin expression and secretion.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Glucose/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/metabolismo
5.
Biochem Biophys Res Commun ; 503(2): 474-481, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29730296

RESUMO

Overdose of acetaminophen (APAP) induces acute liver injury due in part to destruction of mitochondria and resulted oxidative stress. Recently, FGF21 has been demonstrated to be an endocrine factor to protect liver from oxidative stress. The aim of present study is to explore the role of fibroblast growth factor 21 (FGF21) in the protective effect of fenofibrate, an agonist of peroxisome proliferator-activated receptor alpha (PPARα), against acetaminophen (APAP)-induced liver injury. Mice and primary cultured hepatocytes were used to test the potential hepatoprotective effect of fenofibrate against APAP-induced hepatotoxicity. FGF21 deficient mice were used to evaluate the role of FGF21 in fenofibrate against APAP-induced acute liver injury. Post-treatment with fenofibrate significantly inhibits APAP-induced hepatotoxicity, as evidenced by decreased serum ALT and AST levels and hepatic necrosis in liver tissue as well as increased the surviving rate in response to APAP overdose, whereas this protective effect of fenofibrate is largely attenuated in FGF21 KO mice. Interestingly, administration of fenofibrate efficiently increases autophagy, which was companied with alleviating hepatotoxicity in APAP-treated WT mice. However, such effect is significantly attenuated in APAP-treated FGF21 KO mice. In conclusion, our findings suggest that fenofibrate against APAP-induced hepatotoxicity is at least in part mediated by up-regulating the expression of FGF21, which in turn promotes autophagy-mediated hepatoprotective effects.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fenofibrato/uso terapêutico , Fatores de Crescimento de Fibroblastos/metabolismo , PPAR alfa/agonistas , Substâncias Protetoras/uso terapêutico , Animais , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fenofibrato/farmacologia , Fatores de Crescimento de Fibroblastos/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , Substâncias Protetoras/farmacologia
6.
Eur J Clin Invest ; 47(9): 667-674, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28722105

RESUMO

BACKGROUND AND AIMS: This study aimed to investigate the relationship between circulating soluble C-X-C chemokine ligand 16 (CXCL16) levels and clinical characteristics of gallstone. METHODS: 93 subjects including 53 subjects with gallstone, 25 subjects with nonalcoholic fatty liver disease (NAFLD), and 40 control subjects were recruited. All gallstone subjects underwent ultrasounds to confirm the gallstone patients. Serum CXCL16 levels and other clinical and biochemical parameters in all subjects were obtained based on standard clinical examination methods. Liver tissues from patients with gallstone undergoing cholecystotomy and healthy subjects were also used to determine the hepatic CXCL16 profiles by IHC staining and real-time quantitative PCR. RESULTS: Serum CXCL16 levels were significantly increased in patients with gallstone and NAFLD as compared to healthy controls (P < 0·001). Hepatic CXCL16 mRNA and protein levels were also significantly increased in gallstone patients following with elevation of hepatic triglycerides and free fatty acid concentration, as compared to those in healthy subjects (P < 0·001). Otherwise, serum CXCL16 levels positively correlated with nonalcoholic fatty liver disease (NAFLD), alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transpeptidase (GGT) and direct bilirubin (P < 0·05), but negatively with total protein and albumin after adjustment with age and gender. Multiple stepwise regression analyses indicated that CXCL16 was independently associated with AST, NAFLD and albumin (P < 0·05, respectively). CONCLUSIONS: Serum CXCL16 levels are significantly increased in patients with gallstone, and are independently associated with liver injury in Chinese population, suggesting that CXCL16 may be a biomarker of liver injury in subjects with gallstone or NAFLD.


Assuntos
Quimiocina CXCL16/genética , Cálculos Biliares/genética , Fígado/metabolismo , RNA Mensageiro/metabolismo , Adulto , Alanina Transaminase/metabolismo , Fosfatase Alcalina/metabolismo , Povo Asiático , Aspartato Aminotransferases/metabolismo , Estudos de Casos e Controles , Quimiocina CXCL16/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Feminino , Cálculos Biliares/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/metabolismo , gama-Glutamiltransferase/metabolismo
7.
Clin Sci (Lond) ; 131(15): 1877-1893, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28559425

RESUMO

The aim of the present study is to explore the molecular mechanism of fibroblast growth factor 21 (FGF21) in protecting against diabetic cardiomyopathy (DCM). Streptozotocin/high-fat diet (STZ/HFD) was used to induced diabetes in FGF21-deficient mice and their wild-type littermates, followed by evaluation of the difference in DCM between the two genotypes. Primary cultured cardiomyocytes were also used to explore the potential molecular mechanism of FGF21 in the protection of high glucose (HG)-induced cardiomyocyte injury. STZ/HFD-induced cardiomyopathy was exacerbated in FGF21 knockout mice, which was accompanied by a significant reduction in cardiac AMP-activated protein kinase (AMPK) activity and paraoxonase 1 (PON1) expression. By contrast, adeno-associated virus (AAV)-mediated overexpression of FGF21 in STZ/HFD-induced diabetic mice significantly enhanced cardiac AMPK activity, PON1 expression and its biological activity, resulting in alleviated DCM. In cultured cardiomyocytes, treatment with recombinant mouse FGF21 (rmFGF21) counteracted HG-induced oxidative stress, mitochondrial dysfunction, and inflammatory responses, leading to increased AMPK activity and PON1 expression. However, these beneficial effects of FGF21 were markedly weakened by genetic blockage of AMPK or PON1. Furthermore, inactivation of AMPK also markedly blunted FGF21-induced PON1 expression but significantly increased HG-induced cytotoxicity in cardiomyocytes, the latter of which was largely reversed by adenovirus-mediated PON1 overexpression. These findings suggest that FGF21 ameliorates DCM in part by activation of the AMPK-PON1 axis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Arildialquilfosfatase/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/prevenção & controle , Fatores de Crescimento de Fibroblastos/fisiologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Cardiomiopatias Diabéticas/metabolismo , Progressão da Doença , Ativação Enzimática/fisiologia , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Proteínas Klotho , Masculino , Proteínas de Membrana/fisiologia , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/fisiologia
8.
Mol Pharm ; 14(10): 3588-3597, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28841022

RESUMO

Citral is a widely used penetration enhancer that has been used to assist the delivery of drugs through the skin. In this study we aimed to investigate the effectiveness of combination treatments of citral with hyperthermic intraperitoneal chemotherapy (HIPEC) for colorectal cancer and to unravel the underlying mechanism by which citral increased the efficacy of HIPEC. In vitro experiments indicated that citral increased cytoplasmic absorption of pirarubicin and potentiated the effects of pirarubicin on colorectal cancer cells to induce apoptosis. Intracellular reactive oxygen species (ROS) activity was elevated after single or combo treatments with pirarubicin, leading to compromised NF-κB signaling. Therefore, the results suggested that the effects of citral were mediated by increasing cell permeability and ROS productions. Furthermore, the colorectal xenograft model was used to evaluate the efficacy of the combo treatment at the histological and molecular levels, which showed that the cotreatment with citral for colorectal cancer increased the efficacy of HIPEC with pirarubicin with respect to both ascite control and tumor load. The results indicated that citral was an effective additive for HIPEC with pirarubicin for colorectal cancer, which warrant further effort to explore the translational application of this new treatment regimen.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/terapia , Doxorrubicina/análogos & derivados , Hipertermia Induzida/métodos , Monoterpenos/farmacologia , Monoterpenos Acíclicos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/mortalidade , Terapia Combinada/métodos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Feminino , Células HCT116 , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos BALB C , Monoterpenos/uso terapêutico , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Acta Biochim Biophys Sin (Shanghai) ; 49(6): 541-549, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28459937

RESUMO

Chemokine C-X-C ligand 16 (CXCL16), a single-pass Type I membrane protein belonging to the CXC chemokine family, is related to the inflammatory response in liver injury. In present study, we investigated the pathophysiological role of CXCL16, a unique membrane-bound chemokine, in acetaminophen (APAP)-induced hepatotoxicity in mice. Mice were injected with APAP, and blood and tissue samples were harvested at different time points. The serum high-mobility group box 1 and CXCL16 levels were quantified by sandwich immunoassays. The liver tissue sections were stained with hematoxylin-eosin or with dihydroethidium staining. The expressions of CXCL16 and other cytokines were examined by real-time polymerase chain reaction. Ly6-B, p-jun N-terminal kinase (p-JNK), and JNK expressions were measured by western blot analysis. Intracellular glutathione, reactive oxygen species, and malondialdehyde levels were also measured. APAP overdose increased hepatic CXCL16 mRNA and serum CXCL16 protein levels. CXCL16-deficient mice exhibited significantly less liver injury and hepatic necrosis, as well as a lower mortality than wild-type (WT) mice in response to APAP-overdose treatment. APAP elevated the production of oxidative stress and decreased mitochondrial respiratory chain activation in WT mice, which was strongly reversed in CXCL16-knockout mice. In addition, CXCL16 deficiency inhibited the neutrophil infiltration and the production of proinflammatory cytokines triggered by APAP-overdose treatment. Our study revealed that CXCL16 is a critical regulator of liver immune response to APAP-induced hepatotoxicity, thus providing a potential strategy for the treatment of drug-induced acute liver failure by targeting CXCL16.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Quimiocina CXCL16/deficiência , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Analgésicos não Narcóticos/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Quimiocina CXCL16/genética , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamação/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Análise de Sobrevida
10.
Circulation ; 131(21): 1861-71, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25794851

RESUMO

BACKGROUND: Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. METHODS AND RESULTS: The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. CONCLUSIONS: FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels.


Assuntos
Adiponectina/fisiologia , Aterosclerose/prevenção & controle , Fatores de Crescimento de Fibroblastos/uso terapêutico , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adiponectina/biossíntese , Adiponectina/deficiência , Adiponectina/genética , Animais , Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/biossíntese , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Fatores de Crescimento de Fibroblastos/deficiência , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperlipoproteinemia Tipo II/complicações , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/metabolismo , Proteínas Klotho , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/efeitos dos fármacos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Proteínas Recombinantes/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 2/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
11.
J Hepatol ; 61(4): 825-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24882054

RESUMO

BACKGROUND & AIMS: Acetaminophen (APAP) overdose causes hepatic necrosis and acute liver injury by inducing mitochondrial dysfunction and damage. Although the biochemical pathways that mediate APAP-induced hepatotoxicity have been well studied, the body's defense mechanism to attenuate this disease remains elusive. This study investigated the roles of adiponectin, an adipocyte-secreted adipokine with pleiotropic protective effects against obesity-related metabolic dysfunction, in the pathogenesis of APAP-induced liver injury in mice. METHODS: Adiponectin knockout (ADN KO) and C57 wild type mice were treated with an overdose of APAP, followed by histological and biochemical evaluation of liver injury and activation of autophagy. The mechanism of adiponectin in APAP-induced hepatocytic toxicity was also explored in primary cultured hepatocytes. RESULTS: APAP overdose triggers a marked accumulation of adiponectin in injured liver tissues. ADN KO mice exhibit severely exacerbated mitochondrial dysfunction and damage, oxidative stress and necrosis and much higher mortality in response to APAP overdose, whereas these changes are reversed by a single injection of adiponectin. Mechanistically, adiponectin induces autophagosome formation by AMP-activated protein kinase (AMPK)-dependent activation of the Unc-51-like kinase 1, consequently leading to the removal of damaged mitochondria from hepatocytes. The protective effects of adiponectin against APAP-induced mitochondrial damage, oxidative stress and necrosis are abrogated by blockage of AMPK or pharmacological inhibition of autophagy. CONCLUSIONS: Our findings suggest that the APAP-induced accumulation of adiponectin in liver tissues serves as an adaptive mechanism to ameliorate hepatotoxicity by promoting autophagy-mediated clearance of damaged mitochondria. Adiponectin agonists may represent a promising therapy for the drug-induced acute liver failure.


Assuntos
Acetaminofen/toxicidade , Adiponectina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas , Fígado/patologia , Mitocôndrias Hepáticas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Analgésicos não Narcóticos/toxicidade , Animais , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citoproteção , Overdose de Drogas/metabolismo , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo
12.
Cell Signal ; 123: 111379, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39233207

RESUMO

BACKGROUND AND AIMS: Acetaminophen (APAP) is the main cause of acute liver injury (ALI) in the Western. Our previous study has shown that fenofibrate activated hepatic expression of fibroblast growth factor 21 (FGF21) can protect the liver form APAP injuries by promoting autophagy. However, the underlying mechanism involved in FGF21-mediated autophagy remains unsolved. METHODS: The ALI mice model was established by intraperitoneal injection of APAP. To investigate the influence of FGF21 on autophagy and Sirt1 expression in APAP-induced ALI, FGF21 knockout (FGF21KO) mice and exogenously supplemented mouse recombinant FGF21 protein were used. In addition, primary isolated hepatocytes and the Sirt1 inhibitor EX527 were used to observe whether FGF21 activated autophagy in APAP injury is regulated by Sirt1 at the cellular level. RESULTS: FGF21, Sirt1, and autophagy levels increased in mice with acute liver injury (ALI) and in primary cultured hepatocytes. Deletion of the FGF21 gene exacerbated APAP-induced liver necrosis and oxidative stress, and decreased mitochondrial potential. It also reduced the mRNA and protein levels of autophagy-related proteins such as Sirt1, LC3-II, and p62, as well as the number of autophagosomes. Replenishment of FGF21 reversed these processes. In addition, EX527 partially counteracted the protective effect of FGF21 by worsening oxidative damage, mitochondrial damage, and reducing autophagy in primary liver cells treated with APAP. CONCLUSION: FGF21 increases autophagy by upregulating Sirt1 to alleviate APAP-induced injuries.


Assuntos
Acetaminofen , Autofagia , Doença Hepática Induzida por Substâncias e Drogas , Fatores de Crescimento de Fibroblastos , Hepatócitos , Camundongos Endogâmicos C57BL , Sirtuína 1 , Animais , Acetaminofen/efeitos adversos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Autofagia/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Camundongos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Masculino , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos
13.
Commun Biol ; 7(1): 1011, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154074

RESUMO

The acquisition of ectopic fibroblast growth factor receptor 1 (FGFR1) expression is well documented in prostate cancer (PCa) progression, notably in conferring tumor growth advantage and facilitating metastasis. However, how FGFR1 contributes to PCa progression is not fully revealed. Here we report that ectopic FGFR1 in PCa cells promotes transferrin receptor 1 (TFR1) expression and expands the labile iron pool (LIP), and vice versa. We further demonstrate that FGFR1 stabilizes iron regulatory proteins 2 (IRP2) and therefore, upregulates TFR1 via promoting IRP2 binding to the IRE of TFR1. Deletion of FGFR1 in DU145 cells decreases the LIP, which potentiates the anticancer efficacy of iron chelator. Intriguingly, forced expression of IRP2 in FGFR1 depleted cells reinstates TFR1 expression and LIP, subsequently restoring the tumorigenicity of the cells. Together, our results here unravel a new mechanism by which FGFR1 drives PCa progression and suggest a potential novel target for PCa therapy.


Assuntos
Homeostase , Proteína 2 Reguladora do Ferro , Ferro , Neoplasias da Próstata , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Humanos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Linhagem Celular Tumoral , Animais , Proteólise , Camundongos , Regulação Neoplásica da Expressão Gênica , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Antígenos CD
14.
Front Psychiatry ; 14: 1111712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547216

RESUMO

Objective: Alcohol use disorder (AUD) is the second most prevalent mental disorder and might be related to depression. Major vault protein (MVP) is a cytoplasmic protein related to vesicle transport. The present study aimed to investigate the interaction between a genetic variant (MVP rs4788186) and depression in adult male Han Chinese with AUD during withdrawal. Methods: All participants (N = 435) were diagnosed with AUD. Alcohol dependence level was measured using the Michigan Alcoholism Screening Test, and depression was measured using the self-rating depression scale. Genomic DNA was extracted from peripheral blood and genotyped. Results: Hierarchical regression analysis identified an interaction between MVP rs4788186 and alcohol dependence level for depression (ß = -0.17, p < 0.05). Then, a region of significance test was performed to interpret the interaction effect. Re-parameterized regression models revealed that the interaction between MVP rs4788186 and alcohol problem severity fit the strong differential susceptibility model (R2 = 0.08, p < 0.001), suggesting that the AA homozygotes would be more likely subjects with the G allele to experience major depression symptoms. Conclusion: Carriers of the AA homozygote of MVP rs4788186 may be more susceptible to severe alcohol problems and higher levels of depression during withdrawal.

15.
Eur J Clin Invest ; 41(8): 836-45, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21299552

RESUMO

BACKGROUND: C-X-C chemokine ligand 16 (CXCL16) is a scavenger receptor for oxidized low-density lipoprotein that has been shown to promote atherogenic effects in vivo and to predict the long-term mortality in acute coronary syndrome. We conducted a cross-sectional study to test the hypothesis that elevated CXCL16 concentrations are associated with the change in renal function in patients with chronic kidney disease (CKD) at different stages of disease. MATERIALS AND METHODS: Two hundred and forty subjects including 200 patients with CKD (146 CKD from outpatients and 54 CKD with long-term haemodialysis) and 40 normal control subjects were recruited into this study. All CKD subjects underwent echocardiograms to assess left ventricular mass index. Plasma levels of CXCL16 and other relevant clinical and biochemical parameters in all subjects were obtained upon standard clinical examinations. RESULTS: Plasma CXCL16 levels were significantly increased with the development of CKD from early- and end-stage (P < 0·001 for trend) and significantly higher in CKD subjects than those of normal subjects (P<0·001). Furthermore, plasma CXCL16 levels in CKD patients with type 2 diabetes mellitus (DM) were higher than those of CKD patients without DM. Multiple stepwise regression analyses indicated that plasma CXCL16 levels were independently associated with estimated glomerular filtration rate, C-reactive protein and adiponectin (all P<0·05). CONCLUSIONS: Plasma CXCL16 levels are significantly increased with the development of early- to end-stage CKD and are independently associated with the change in renal function. Elucidating the role of CXCL16 as a biomarker or disease modifier in CKD progression requires further study.


Assuntos
Quimiocina CXCL6/sangue , Diabetes Mellitus Tipo 2/sangue , Falência Renal Crônica/sangue , Adulto , Idoso , Biomarcadores/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Ecocardiografia , Feminino , Humanos , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Receptores Depuradores/metabolismo , Análise de Regressão , Diálise Renal
16.
Redox Biol ; 40: 101859, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33445067

RESUMO

Hepatic ischemia-reperfusion injury (IRI) is a major complication of liver surgery and transplantation. IRI leads to hepatic parenchymal cell death, resulting in liver failure, and lacks effective therapeutic approaches. Fibroblast growth factor 10 (FGF10) is a paracrine factor which is well-characterized with respect to its pro-proliferative effects during embryonic liver development and liver regeneration, but its role in hepatic IRI remains unknown. In this study, we investigated the role of FGF10 in liver IRI and identified signaling pathways regulated by FGF10. In a mouse model of warm liver IRI, FGF10 was highly expressed during the reperfusion phase. In vitro experiments demonstrated that FGF10 was primarily secreted by hepatic stellate cells and acted on hepatocytes. The role of FGF10 in liver IRI was further examined using adeno-associated virus-mediated gene silencing and overexpression. Overexpression of FGF10 alleviated liver dysfunction, reduced necrosis and inflammation, and protected hepatocytes from apoptosis in the early acute injury phase of IRI. Furthermore, in the late phase of IRI, FGF10 overexpression also promoted hepatocyte proliferation. Meanwhile, gene silencing of FGF10 had the opposite effect. Further studies revealed that overexpression of FGF10 activated nuclear factor-erythroid 2-related factor 2 (NRF2) and decreased oxidative stress, mainly through activation of the phosphatidylinositol-3-kinase/AKT pathway, and the protective effects of FGF10 overexpression were largely abrogated in NRF2 knockout mice. These results demonstrate the protective effects of FGF10 in liver IRI, and reveal the important role of NRF2 in FGF10-mediated hepatic protection during IRI.


Assuntos
Traumatismo por Reperfusão , Animais , Apoptose , Fator 10 de Crescimento de Fibroblastos , Hepatócitos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/genética
17.
Front Cell Dev Biol ; 8: 601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793588

RESUMO

It is a well-documented event that fibroblast growth factors (FGFs) regulate liver development and homeostasis in autocrine, paracrine, and endocrine manners via binding and activating FGF receptors (FGFRs) tyrosine kinase in hepatocytes. Recent research reveals that hepatic stellate cells (HSCs) play a fundamental role in liver immunology. However, how FGF signaling in HSCs regulates liver inflammation remains unclear. Here, we report that FGF promoted NF-κB signaling, an inflammatory pathway, in human HSCs, which was associated with FGFR1 expression. Both FGF and NF-κB signaling in HSCs were compromised by FGFR1 tyrosine kinase inhibitor. After stimulating HSCs with proinflammatory cytokines, expression of multiple FGF ligands was significantly increased. However, disruption of FGF signaling with FGFR inhibitors prominently reduced the apoptosis, inflammatory response, NF-κB nuclear translocation, and expression of matrix metalloproteinase-9 (MMP-9) induced by TNFα in HSCs. Interestingly, FGF21 significantly alleviated the inflammation responses in the concanavalin A (Con A)-induced acutely injured liver. Unlike canonic FGFs that elicit signals through activating the FGFR-heparan sulfate complex, FGF21 activates the FGFR-KLB complex and elicits a different set of signals. Therefore, the finding here indicates the urgency of developing pathway-specific inhibitors that only suppress canonical FGF, but not non-canonical FGF21, signaling for alleviating inflammation in the liver, which is presented in all stages of diseased liver.

18.
Cell Metab ; 27(6): 1323-1337.e5, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29706566

RESUMO

Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. However, the role of FGF21 in hypertension remains elusive. Here we show that FGF21 deficiency significantly exacerbates angiotensin II-induced hypertension and vascular dysfunction, whereas such negative effects are reversed by replenishment of FGF21. Mechanistically, FGF21 acts on adipocytes and renal cells to promote induction of angiotensin-converting enzyme 2 (ACE2), which in turn converts angiotensin II to angiotensin-(1-7), then inhibits hypertension and reverses vascular damage. In addition, ACE2 deficiency strikingly abrogates these beneficial effects of FGF21 in mice, including alleviation of angiotensin II-associated hypertension and vascular damage. Otherwise, pharmaceutical inhibition of angiotensin-(1-7) attenuates the protective effect of FGF21 on angiotensin II-induced vascular dysfunction, but not on hypertension. Thus, FGF21 protects against angiotensin II-induced hypertension and vascular impairment by activation of the ACE2/angiotensin-(1-7) axis via fine-tuning the multi-organ crosstalk between liver, adipose tissue, kidney, and blood vessels.


Assuntos
Angiotensina II , Angiotensina I/metabolismo , Sistema Cardiovascular/metabolismo , Fatores de Crescimento de Fibroblastos , Hipertensão/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Angiotensina I/antagonistas & inibidores , Angiotensina II/administração & dosagem , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Pressão Sanguínea/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/fisiologia , Rim/efeitos dos fármacos , Rim/metabolismo , Mutação com Perda de Função , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos/antagonistas & inibidores , Peptidil Dipeptidase A/genética
19.
J Environ Sci (China) ; 19(1): 44-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913152

RESUMO

Salicylic acid (SA) was an essential component of the plant resistance to pathogens and also plays an important role in mediating plant response to some abiotic stress. The possible effects of SA on the growth and H2O2-metabolizing enzymes in rice seedlings under lead stress were studied. When rice seedlings grown in nutrient solution containing Pb2+ (0, 0.05, 0.15, 0.25 mmol/L) for 18 d, the plant biomass as well as the chlorophyll content of leaves decreased with increasing Pb concentration. The pre-treatment with SA (treated with 0.1 mmol/L SA for 48 h before Pb stress) partially protected seedlings from Pb toxicity. The chlorophyll contents were significant higher in leaves of Pb-exposed with SA pre-treatment seedlings than in Pb-exposed plants at the same Pb intensity. SA pre-treated alone could significantly increase the length of shoot and root of seedlings but the vigour difference was not marked under long-term exposure to Pb toxicity. SA pre-treated influence the H202 level in leaves of seedlings by up-regulating the activity of superoxide dismutase (SOD), repressing the activity of catalase (CAT) and ascorbate peroxidase (APX) depending on the concentrations of Pb2+ in the growth medium. The results supported the conclusion that SA played a positive role in rice seedlings against Pb toxicity.


Assuntos
Peróxido de Hidrogênio/metabolismo , Chumbo/toxicidade , Oryza/efeitos dos fármacos , Ácido Salicílico/farmacologia , Catalase/metabolismo , Clorofila/análise , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/enzimologia , Superóxido Dismutase/metabolismo
20.
Chemosphere ; 65(10): 1690-6, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16844189

RESUMO

A pot experiment with 38 commonly cultured rice cultivars showed that the effect of Cu (100 mg kg(-1)) on rice growth, grain yield and accumulation of Cu in brown rice varied greatly with different cultivars. Although the average Cu concentration in brown rice of the 38 cultivars was significantly increased (P<0.01) compared with the control, in none of the cultivars did Cu concentration in brown rice exceed the maximum permissible limit of 10 mg Cu kg(-1). This suggests that rice grown in Cu-contaminated paddy soil (100 mg Cu kg(-1)) will not adversely affect human health through the food chain. Because of the significant negative correlation between grain weight and Cu concentration in brown rice with the soil Cu treatment, screening for cultivars with low Cu accumulation in brown rice and high grain yield for Cu-contaminated areas is feasible. The present research led to the recommendation of three such cultivars: Jiahua, Zhenxian 866, Zhe 733. The average grain yield under Cu treatment (100 mg Cu kg(-1) soil) was significantly (P<0.01) reduced compared with the control. The decreases or increases of grain yields mainly resulted from the combined effects of the panicles per pot, spikelets per panicle and filled spikelets per panicle under the soil Cu treatment. Furthermore, there were significant (r=0.869, P<0.01) positive correlations between the RC (relative changes) of spikelets per panicle and filled spikelets per panicle under the soil Cu treatment.


Assuntos
Cobre/farmacologia , Oryza/efeitos dos fármacos , Poluentes do Solo/farmacologia , Cobre/metabolismo , Relação Dose-Resposta a Droga , Contaminação de Alimentos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Poluentes do Solo/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA