Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6162, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788988

RESUMO

Edge supercurrent has attracted great interest recently due to its crucial role in achieving and manipulating topological superconducting states. Proximity-induced superconductivity has been realized in quantum Hall and quantum spin Hall edge states, as well as in higher-order topological hinge states. Non-Hermitian skin effect, the aggregation of non-Bloch eigenstates at open boundaries, promises an abnormal edge channel. Here we report the observation of broad edge supercurrent in Dirac semimetal Cd3As2-based Josephson junctions. The as-grown Cd3As2 nanoplates are electron-doped by intrinsic defects, which enhance the non-Hermitian perturbations. The superconducting quantum interference indicates edge supercurrent with a width of ~1.6 µm and a magnitude of ~1 µA at 10 mK. The wide and large edge supercurrent is inaccessible for a conventional edge system and suggests the presence of non-Hermitian skin effect. A supercurrent nonlocality is also observed. The interplay between band topology and non-Hermiticity is beneficial for exploiting exotic topological matter.

2.
Sci Bull (Beijing) ; 68(22): 2743-2749, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37872061

RESUMO

The non-volatile magnetoresistive random access memory (MRAM) is believed to facilitate emerging applications, such as in-memory computing, neuromorphic computing and stochastic computing. Two-dimensional (2D) materials and their van der Waals heterostructures promote the development of MRAM technology, due to their atomically smooth interfaces and tunable physical properties. Here we report the all-2D magnetoresistive memories featuring all-electrical data reading and writing at room temperature based on WTe2/Fe3GaTe2/BN/Fe3GaTe2 heterostructures. The data reading process relies on the tunnel magnetoresistance of Fe3GaTe2/BN/Fe3GaTe2. The data writing is achieved through current induced polarization of orbital magnetic moments in WTe2, which exert torques on Fe3GaTe2, known as the orbit-transfer torque (OTT) effect. In contrast to the conventional reliance on spin moments in spin-transfer torque and spin-orbit torque, the OTT effect leverages the natural out-of-plane orbital moments, facilitating field-free perpendicular magnetization switching through interface currents. Our results indicate that the emerging OTT-MRAM is promising for low-power, high-performance memory applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA