Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biometals ; 33(1): 75-85, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31897857

RESUMO

To understand the biological effects of Thorium-232 (Th) in human cells and animal models as well as to assess mitigation strategies for its detoxification, there is a need to develop a sensitive, specific, high-throughput and easily-implementable assay for detection and estimation of Th in biological samples. Here, we have optimized arsenazo-III dye based colorimetric assay to detect Th in biological samples. The concentration of arsenazo-III (i.e. 50 µM) was optimized, which can reliably estimate Th in the concentration range of 2.5 to 40 µM. The optimized assay can specifically detect Th without interference from other metal ions (La, Ce, U, Fe, Ca, Cu, Zn and Mn). A significant correlation (R2 = 0.999) was found between arsenazo-III-based detection of Th and total reflection X-ray fluorescence. The conditions of present assay successfully estimated Th in cell culture medium, cell harvesting (trypsin-EDTA) solution and cell lysate obtained from human liver cell culture. Moreover, for the first time, we detected Th in-situ in adherent liver cells in culture after staining with arsenazo-III. This study confirms that Th can be specifically determined in biological samples using arsenazo-III with the sensitivity, which is relevant to thorium toxicity research.


Assuntos
Arsenazo III/química , Corantes/química , Tório/análise , Colorimetria , Células Hep G2 , Humanos , Estrutura Molecular , Células Tumorais Cultivadas
2.
Biochim Biophys Acta ; 1840(1): 485-94, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24121106

RESUMO

BACKGROUND: Radioresistance is the major impediment in radiotherapy of many cancers including prostate cancer, necessitating the need to understand the factors contributing to radioresistance in tumor cells. In the present study, the role of cellular redox and redox sensitive transcription factor, Nrf2 in the radiosensitivity of prostate cancer cell lines PC3 and DU145, has been investigated. MATERIALS AND METHODS: Differential radiosensitivity of PC3 and DU145 cells was assessed using clonogenic assay, flow cytometry, and comet assay. Their redox status was measured using DCFDA and DHR probes. Expression of Nrf2 and its dependent genes was measured by EMSA and real time PCR. Knockdown studies were done using shRNA transfection. RESULTS: PC3 and DU145 cells differed significantly in their radiosensitivity as observed by clonogenic survival, apoptosis and neutral comet assays. Both basal and inducible levels of ROS were higher in PC3 cells than that of DU145 cells. DU145 cells showed higher level of basal GSH content and GSH/GSSG ratio than that of PC3 cells. Further, significant increase in both basal and induced levels of Nrf2 and its dependent genes was observed in DU145 cells. Knock-down experiments and pharmacological intervention studies revealed the involvement of Nrf2 in differential radio-resistance of these cells. CONCLUSION: Cellular redox status and Nrf2 levels play a causal role in radio-resistance of prostate cancer cells. GENERAL SIGNIFICANCE: The pivotal role Nrf2 has been shown in the radioresistance of tumor cells and this study will further help in exploiting this factor in radiosensitization of other tumor cell types.


Assuntos
Raios gama , Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias da Próstata/patologia , Tolerância a Radiação , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos da radiação , Western Blotting , Proliferação de Células/efeitos da radiação , Radioisótopos de Cobalto , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Masculino , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiorredoxina Dissulfeto Redutase , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
3.
Int J Hyperthermia ; 31(8): 909-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26416812

RESUMO

PURPOSE: We have evaluated the hyperthermia efficacy of oleic acid-functionalised Fe(3)O(4) magnetic nanoparticles (MN-OA) under in vivo conditions and elucidated the underlying mechanism of tumour growth inhibition. MATERIALS AND METHODS: The efficacy and mechanism of tumour growth inhibition by MN-OA-mediated magnetic hyperthermia therapy (MHT) was evaluated in a murine fibrosarcoma tumour model (WEHI-164) using techniques such as TUNEL assay, Western blotting (WB), immunofluorescence (IF) staining and histopathological examination. In addition, bio-distribution of MN-OA in tumour/other target organs and its effect on normal organ function were studied by Prussian blue staining and serum biochemical analysis, respectively. RESULTS: MN-OA-induced MHT resulted in significant inhibition of tumour growth as determined by measurement of tumour volume, as well as by in vivo imaging of tumour derived from luciferase-transfected WEHI-164 cells. Histopathology analysis showed presence of severe apoptosis and reduced tumour cells proliferation, which was further confirmed by TUNEL assay, reduced expression of Ki-67 and enhanced level of cleaved caspase-3, in tumours treated with MHT. Moreover, expression of heat stress marker, Hsp90 and its client protein, AKT/PKB was reduced by ∼50 and 80%, respectively, in tumours treated with MHT as studied by WB and IF staining. Serum analysis suggested insignificant toxicity of MN-OA (in terms of liver and kidney function), which was further correlated with minimal accumulation of MN-OA in target organs. CONCLUSIONS: These results suggest the involvement of apoptosis and Hsp90/AKT modulation in MN-OA-mediated MHT-induced tumour growth inhibition.


Assuntos
Fibrossarcoma/tratamento farmacológico , Hipertermia Induzida , Nanopartículas de Magnetita/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Fibrossarcoma/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Nanopartículas de Magnetita/uso terapêutico , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-akt/metabolismo , Baço/metabolismo , Distribuição Tecidual , Carga Tumoral/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 109(16): E926-33, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22451927

RESUMO

The translationally controlled tumor protein (TCTP) is essential for survival by mechanisms that as yet are incompletely defined. Here we describe an important role of TCTP in response to DNA damage. Upon exposure of normal human cells to low-dose γ rays, the TCTP protein level was greatly increased, with a significant enrichment in nuclei. TCTP up-regulation occurred in a manner dependent on ataxia-telangiectasia mutated (ATM) kinase and the DNA-dependent protein kinase and was associated with protective effects against DNA damage. In chromatin of irradiated cells, coimmunoprecipitation experiments showed that TCTP forms a complex with ATM and γH2A.X, in agreement with its distinct localization with the foci of the DNA damage-marker proteins γH2A.X, 53BP1, and P-ATM. In cells lacking TCTP, repair of chromosomal damage induced by γ rays was compromised significantly. TCTP also was shown to interact with p53 and the DNA-binding subunits, Ku70 and Ku80, of DNA-dependent protein kinase. TCTP knockdown led to decreased levels of Ku70 and Ku80 in nuclei of irradiated cells and attenuated their DNA-binding activity. It also attenuated the radiation-induced G(1) delay but prolonged the G(2) delay. TCTP therefore may play a critical role in maintaining genomic integrity in response to DNA-damaging agents.


Assuntos
Biomarcadores Tumorais/metabolismo , Dano ao DNA , Reparo do DNA , Transdução de Sinais/efeitos da radiação , Animais , Antígenos Nucleares/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Fase G1/efeitos da radiação , Fase G2/efeitos da radiação , Raios gama , Histonas/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Autoantígeno Ku , Camundongos , Camundongos Endogâmicos C3H , Ligação Proteica/efeitos da radiação , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Proteína Tumoral 1 Controlada por Tradução , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
Biomater Adv ; 161: 213868, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677038

RESUMO

Triple negative breast carcinoma (TNBC) accounts for 15-20 % of all incident breast cancers (BC) and is known to be highly invasive, has fewer treatment options, and tends to have a worse prognosis. However, due to its biological heterogeneity and diverse clinical and epidemiological behaviors, TNBC lacks a tumor-specific targeted therapy. In the present work we have developed a TNBC-specific targeted nano-delivery agent comprising of a cRGD labeled magneto-liposome (T-LMD) co-encapsulated with oleic acid coated iron oxide nanoparticles (MN-OA) and doxorubicin (Dox) in the liposome bilayer and core, respectively. T-LMD was found to show enhanced uptake and induction of ferroptotic cell death in MDA-MB-231, a TNBC model cell line. Additionally, T-LMD induced ferroptosis was found to be accompanied by release of HMGB1, an immunogenic cell death marker, suggesting its immunogenicity for augmenting the activation of anti-tumor immunity in TNBC. The strategic placement of IONPs in the liposome bilayer of T-LMD facilitates the sensitization of MDA-MB-231 cells to undergo ferroptosis; predominantly via the activation of the iron/lipid metabolism pathway, as validated by use of small molecule ferroptosis inhibitor (ferrostatin-1) and iron chelator (deferoxamine). Activation of ferroptotic cell death was also corroborated by ferroptosis specific-ultrastructural alterations in the shape/size of cellular mitochondria and cell ballooning as observed by transmission electron microscopy and bright field imaging, respectively. Thus, our ferroptosis nano-inducer (T-LMD) can efficiently kill TNBC cells via enhanced LPO and ROS generation leading to membrane damage and consequent release of LDH and HMGB1, induce mitochondrial alterations and enhanced DNA double strand breaks. Altogether, our results suggest significant implications of T-LMD for treatment of TNBC.


Assuntos
Doxorrubicina , Ferroptose , Lipossomos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Ferroptose/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Lipossomos/química , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Proteína HMGB1/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/química
6.
Int J Radiat Biol ; 99(6): 964-982, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35559659

RESUMO

PURPOSE: The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells. How the oxidative damage spreads from the irradiated cells to their neighboring bystander cells has been under intense investigation. Following a brief summary of the trends in radiobiology leading to this paradigm shift in the field, we review key findings of bystander effects induced by low and high doses of various types of radiation that differ in their biophysical characteristics. While notable mechanistic insights continue to emerge, here the focus is on the many means of intercellular communication that mediate these effects, namely junctional channels, secreted molecules and extracellular vesicles, and immune pathways. CONCLUSIONS: The insights gained by studying radiation bystander effects are leading to a basic understanding of the intercellular communications that occur under mild and severe oxidative stress in both normal and cancerous tissues. Understanding the mechanisms underlying these communications will likely contribute to reducing the uncertainty of predicting adverse health effects following exposure to low dose/low fluence ionizing radiation, guide novel interventions that mitigate adverse out-of-field effects, and contribute to better outcomes of radiotherapeutic treatments of cancer. In this review, we highlight novel routes of intercellular communication for investigation, and raise the rationale for reconsidering classification of bystander responses, abscopal effects, and expression of genomic instability as non-targeted effects of radiation.


Assuntos
Efeito Espectador , Lesões por Radiação , Humanos , Efeito Espectador/efeitos da radiação , Dano ao DNA , Comunicação Celular , Estresse Oxidativo , Radiação Ionizante
7.
PLoS One ; 18(11): e0281919, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943802

RESUMO

The present pilot study aims to investigate the diagnostic and prognostic efficacy of serum HSP90 beta in Head and Neck Squamous Cell Carcinoma (HNSCC) patients subjected to localized hyperthermia therapy (HT). Serum levels of HSP90 beta were measured by ELISA and its diagnostic and prognostic efficacy was determined by receiver operating characteristic curve (ROC) analysis. HNSCC patients showed significantly (P<0.05) higher serum levels of HSP90 beta (65.6±13.08 ng/ml) compared to Healthy Controls (HC: 23.5±3.8 ng/ml). No significant difference was observed in serum HSP90 beta levels between complete responders (CR) and non-responders (NR) in the chemo-radiation therapy (CRT) cohort. However, in CRT+HT cohort, CR showed significantly (P = 0.02) lower serum HSP90 beta levels at 24 h after HT (25.6±9.04 ng/ml) compared to NR (130.5±34.2 ng/ml). Youden's index values between HNSCC versus HC, CR versus NR (CRT) and CR versus NR (CRT+HT) were found to be 0.47, 0.45 and 0.80, respectively. Thus, alterations in the serum HSP90 beta after HT suggest its potential in prognosis of HT response in HNSCC patients. Elevated levels of HSP90 beta may serve as a promising diagnostic serum bio-marker for HNSCC. However, further validation in larger patient samples is needed for clinical translation of HSP90 beta as diagnostic and prognostic biomarker.


Assuntos
Neoplasias de Cabeça e Pescoço , Hipertermia Induzida , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Projetos Piloto , Prognóstico , Neoplasias de Cabeça e Pescoço/terapia , Biomarcadores Tumorais
8.
RSC Adv ; 13(19): 13240-13251, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37123999

RESUMO

Deoxyglucose conjugated nanoparticles with persistent luminescence have shown theragnostic potential. In this study, deoxyglucose-conjugated nano-particles with persistent luminescence properties were synthesized, and their theragnostic potential was evaluated in fibrosarcoma cancer cells and a tumor model. The uptake of nano-formulation was found to be higher in mouse fibrosarcoma (WEHI-164) cells cultured in a medium without glucose. Nanoparticles showed a higher killing ability for cancer cells compared to normal cells. A significant accumulation of nanoparticles to the tumor site in mice was evident by the increased tumor/normal leg ratio, resulting in a significant decrease in tumor volume and weight. Histopathological studies showed a significant decrease in the number of dividing mitotic cells but a greater number of apoptotic/necrotic cells in nanoparticle-treated tumor tissues, which was correlated with a lower magnitude of Ki-67 expression (a proliferation marker). Consequently, our results showed the potential of our nano-formulation for cancer theragnosis.

9.
Biochem Biophys Res Commun ; 417(2): 903-9, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22209849

RESUMO

Diospyrin diethylether (D7), a bisnaphthoquinonoid derivative, exhibited an oxidative stress-dependent apoptosis in several human cancer cells and tumor models. The present study was aimed at evaluation of the increase in cytosolic calcium [Ca(2+)](c) leading to the apoptotic cell death triggered by D7 in MCF7 human breast carcinoma cells. A phosphotidylcholine-specific phospholipase C (PC-PLC) inhibitor, viz. U73122, and an antioxidant, viz. N-acetylcysteine, could significantly prevent the D7-induced rise in [Ca(2+)](c) and PC-PLC activity. Using an endoplasmic reticulum (ER)-Ca(2+) mobilizer (thapsigargin) and an ER-IP3R antagonist (heparin), results revealed ER as a major source of [Ca(2+)](c) which led to the activation of calpain and caspase12, and cleavage of fodrin. These effects including apoptosis were significantly inhibited by the pretreatment of Bapta-AM (a cell permeable Ca(2+)-specific chelator), or calpeptin (a calpain inhibitor). Furthermore, D7-induced [Ca(2+)](c) was found to alter mitochondrial membrane potential and induce cytochrome c release, which was inhibited by either Bapta-AM or ruthenium red (an inhibitor of mitochondrial Ca(2+) uniporter). Thus, these results provided a deeper insight into the D7-induced redox signaling which eventually integrated the calcium-dependent calpain/caspase12 activation and mitochondrial alterations to accentuate the induction of apoptotic cell death.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Carcinoma/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Naftoquinonas/farmacologia , Acetilcisteína/farmacologia , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Quelantes/farmacologia , Citosol/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Retículo Endoplasmático/metabolismo , Estrenos/farmacologia , Feminino , Humanos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Pirrolidinonas/farmacologia , Rutênio Vermelho/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
10.
Mutat Res ; 748(1-2): 52-9, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22790088

RESUMO

The assessment of tumor radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. Therefore, the degree of correlation between radiation-induced DNA damage, as measured by the alkaline and the neutral comet assays, and the clonogenic survival of different human tumor cells was studied. Further, tumor radiosensitivity was compared with the expression of genes associated with the cellular response to radiation damage. Five different human tumor cell lines were chosen and the radiosensitivity of these cells was established by clonogenic assay. Alkaline and neutral comet assays were performed in γ-irradiated cells (2-8Gy; either acute or fractionated). Quantitative PCR was performed to evaluate the expression of DNA damage response genes in control and irradiated cells. The relative radiosensitivity of the cell lines assessed by the extent of DNA damage (neutral comet assay) immediately after irradiation (4Gy or 6Gy) was in agreement with radiosensitivity pattern obtained by the clonogenic assay. The survival fraction of irradiated cells showed a better correlation with the magnitude of DNA damage measured by the neutral comet assay (r=-0.9; P<0.05; 6Gy) than evaluated by alkaline comet assay (r=-0.73; P<0.05; 6Gy). Further, a significant correlation between the clonogenic survival and DNA damage was observed in cells exposed to fractionated doses of radiation. Of 15 genes investigated in the gene expression study, HSP70, KU80 and RAD51 all showed significant positive correlations (r=0.9; P<0.05) with tumor radiosensitivity. Our study clearly demonstrated that the neutral comet assay was better than alkaline comet assay for assessment of radiosensitivities of tumor cells after acute or fractionated doses of irradiation.


Assuntos
Ensaio Cometa/métodos , Dano ao DNA , Expressão Gênica/efeitos da radiação , Tolerância a Radiação/genética , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Humanos , Neoplasias/genética , Reação em Cadeia da Polimerase , Valor Preditivo dos Testes
11.
Biomater Adv ; 142: 213147, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36260957

RESUMO

The chemo-therapeutic efficacy of Doxorubicin (Dox), a potent anti-cancer drug used in the treatment of several solid tumors, is severely compromised by its cardio-toxicity. To overcome this shortcoming and exploit the utmost theranostic potential of nano-formulations, magnetic nanoparticles co-encapsulated with Dox and indocyanine green (ICG) in a liposomal carrier and tagged with cyclic RGD peptide were rationally designed and synthesized. These magneto-liposomes (T-LMD) showed αvß3-integrin receptor targeting and higher cyto-toxicity in several cancer cell lines (i.e. lung, breast, skin, brain and liver cancer) in combination with or without gamma radiation or magnetic hyperthermia therapy as compared to clinical liposomal nano-formulation of Dox (Lippod™). Mechanism of chemo-radio-sensitization was found to involve activation of JNK mediated pro-apoptotic signaling axis and delayed repair of DNA double strand breaks. Real time imaging of ICG labeled T-LMD suggested ~6-18 fold higher tumor accumulation of T-LMD as compared to off-target organs (kidney, liver, spleen, intestine, lungs and heart) and resulted in its higher combinatorial (chemo-radio-hyperthermia) tumor therapy efficacy as compared to Lippod™. Moreover, T-LMD showed insignificant toxicity to the heart tissue as suggested by serum levels of CK-MB, histo-pathological analysis, anti-oxidant enzyme activities (Catalase and GST) and markers of cardiac fibrosis, suggesting its potential for targeted multi-modal therapy of cancer.


Assuntos
Nanopartículas de Magnetita , Fototerapia , Fototerapia/métodos , Medicina de Precisão , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Verde de Indocianina , Lipossomos , Dano ao DNA
12.
Chemosphere ; 288(Pt 2): 132557, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34653484

RESUMO

Hepatic disorders reported in humans exposed to Thorium-232 (Th-232) rationalizes the present study investigating the toxicological response of normal human liver cells (WRL 68) and its validation in Swiss mice. Cell count analysis of WRL 68 cells-treated with Th-nitrate (1-200 µM) estimated IC50 of ∼24 µM (at 24 h) and 35 µM (at 48 h). Analysis of cell viability (trypan blue assay) showed the IC50 of ∼172 µM. Phase contrast bright-field microscopy revealed Th-induced morphological changes and cell-released microvesicle-like structures in extracellular space. Th-estimation by ICP-MS (Inductively-coupled plasma mass-spectrometry) showed uptake of Th by cells as a function of concentration and incubation time. Employing DTPA as a chelating agent in cell harvesting solution, cell-internalized/strongly-bound Th was estimated to be ∼42% of total incubated Th. Th-uptake studies in the presence of ion-channel specific inhibitors (e.g. nifedipine, thapsigargin) revealed the role of plasma membrane calcium channels and cytoplasmic calcium in modulating the Th-uptake. Transmission electron microscopy of Th-treated cells showed cell-derived extracellular vesicles, alterations in the shape and size of nucleus and mitochondria as well as cytoplasmic inclusions. The order of Th accumulation in various sub-cellular protein fractions was found to be as cytoskeleton (43%) > cytoplasmic (15%) > chromatin (7%) > nuclear (5%) & membrane (5%). Immunofluorescence analysis of WRL 68 cells showed that Th significantly altered the expression of cytoskeleton proteins (F-actin and keratin), which was further validated in liver tissues of Swiss mice administered with Th-232. Findings herein highlight the role of calcium channels and cytoskeleton in Th-induced toxicity. Keywords: Thorium toxicity; Liver cells; Calcium channels; Sub-cellular targets, Cytoskeleton; Swiss Mice.


Assuntos
Canais de Cálcio , Proteínas do Citoesqueleto , Animais , Humanos , Fígado , Camundongos , Tório/toxicidade
13.
Cell Biol Int ; 35(10): 1025-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21557727

RESUMO

TQ (thymoquinone), the bioactive constituent of black seed (Nigella sativa), has been shown to inhibit the growth of various human cancers both in vitro and in vivo. This study reports the radiosensitizing effect of TQ on human breast carcinoma cells (MCF7 and T47D). TQ in combination with single dose of ionizing radiation (2.5 Gy) was found to exert supra-additive cytotoxic effects on both the carcinomas as measured by cell proliferation and colony-formation assays. Annexin V binding and FACS analysis revealed the role of enhanced apoptosis and cell cycle modulation in the mechanism of TQ-mediated radiosensitization, thus supporting TQ as an adjuvant for preclinical testing in cancer chemo-radiotherapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Radiação Ionizante , Antineoplásicos Fitogênicos/química , Benzoquinonas/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Nigella sativa/química
14.
Environ Pollut ; 281: 116969, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33845224

RESUMO

Inhalation represents the most prevalent route of exposure with Thorium-232 compounds (Th-nitrate/Th-dioxide)/Th-containing dust in real occupational scenario. The present study investigated the mechanism of Th response in normal human alveolar epithelial cells (WI26), exposed to Th-nitrate or colloidal Th-dioxide (1-100 µg/ml, 24-72 h). Assessment in terms of changes in cell morphology, cell proliferation (cell count), plasma membrane integrity (lactate dehydrogenase leakage) and mitochondrial metabolic activity (MTT reduction) showed that Th-dioxide was quantitatively more deleterious than Th-nitrate to WI26 cells. TEM and immunofluorescence analysis suggested that Th-dioxide followed a clathrin/caveolin-mediated endocytosis, however, membrane perforation/non-endocytosis seemed to be the mode of Th internalization in cells exposed to Th-nitrate. Th-estimation by ICP-MS showed significantly higher uptake of Th in cells treated with Th-dioxide than with Th-nitrate at a given concentration. Both Th-dioxide and nitrate were found to increase the level of reactive oxygen species, which seemed to be responsible for lipid peroxidation, alteration in mitochondrial membrane potential and DNA-damage. Amongst HSPs, the protein levels of HSP70 and HSP90 were affected differentially by Th-nitrate/dioxide. Specific inhibitors of ATM (KU55933) or HSP90 (17AAG) were found to increase the Th- cytotoxicity suggesting prosurvival role of these signaling molecules in rescuing the cells from Th-toxicity.


Assuntos
Dióxido de Tório , Contagem de Células , Dano ao DNA , Células Epiteliais , Humanos , Pulmão/química , Nitratos/toxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio , Tório/análise
15.
Biochim Biophys Acta Gen Subj ; 1863(5): 857-869, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30794824

RESUMO

BACKGROUND: Nanoparticle-based therapies have emerged as a promising approach to overcome limitations of conventional chemotherapy. Present study investigates the potential of oleic acid-functionalized iron-oxide nanoparticles (MN-OA) to enhance the radiation response of fibrosarcoma tumor and elucidates its underlying mechanism. METHODS: Various cellular and molecular assays (e.g. MTT, clonogenic, cell cycle analysis, cell death, DNA damage/repair) and tumor growth kinetics were employed to investigate the mechanism of MN-OA induced radio-sensitization. RESULTS: Mouse (WEHI-164) and human (HT-1080) fibrosarcoma cells treated with MN-OA and gamma-radiation (2 Gy) showed a significant decrease in the cell proliferation. Combination treatment showed significant decrease in clonogenic survival of WEHI-164 cells and was found to induce cell cycle arrest, apoptosis and mitotic catastrophe. The mechanism of radio-sensitization was found to involve binding of MN-OA with HSP90, resulting in down-regulation of its client proteins, involved in cell cycle progression (Cyclin B1 and CDC2) and DNA-double strand break repair (e.g. RAD51 and BRCA1). Consistently, longer persistence of DNA damage in cells treated with MN-OA and radiation was observed in the form of γ-H2AX foci. The efficacy and mechanism of MN-OA-induced radio-sensitization was also validated in an immuno-competent murine fibrosarcoma model. CONCLUSION: This study reveals the key role of HSP90 in the mechanism of tumor radio-sensitization by MN-OA. GENERAL SIGNIFICANCE: Present work provides a deeper understanding about the mechanism of MN-OA-induced tumor radiosensitization, highlighting the role of HSP90 protein. In addition to diagnostic and magnetic hyperthermia abilities, present remarkable radiosensitizing activity of MN-OA would further excite the clinicians to test its anti-cancer potential.


Assuntos
Antineoplásicos/farmacologia , Compostos Férricos/farmacologia , Fibrossarcoma/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Nanopartículas/química , Radiossensibilizantes/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Férricos/química , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Cinética , Camundongos , Radiossensibilizantes/química
16.
Int J Radiat Biol ; 95(12): 1648-1658, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31486717

RESUMO

Purpose: Non-Targeted effects (NTE), such as bystander effect (BE) and genomic instability (GI) challenge central dogma of radiation biology. Moreover, there is a need to understand its universality in different type of cells and radiation quality.Materials and method: To study BE (primary and secondary) and GI Human adult dermal fibroblast (HADF) and peripheral blood lymphocytes (PBL) were exposed to low fluence of 241Am alpha (α) particle and 6 MV X-ray. The BE was carried out by means of co-culture methodology after exposing the cells to both types of radiation and damage was measured using micronucleus assay (MN) and chromosomal aberration assay (CA) in the p1 cells while the GI was followed up in their progeny.Results: A dose-dependent increase in DNA damages (MN and CA) was observed in directly irradiated and bystander cells. The magnitude of BE was higher (6 fold) in cells co-cultured with the α-irradiated cells than that of with X-irradiated cells. Cross exposure of both cell types confirms that radiation induced BE is cell type dependent. In addition, induced DNA damage persisted for a longer population doubling in α-particle irradiated cells.Conclusion: This work adds evidence to secondary bystander response generated from primary bystander normal cells and its dependence to radiation quality.


Assuntos
Efeito Espectador/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Transferência Linear de Energia , Partículas alfa/efeitos adversos , Técnicas de Cocultura , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Raios X/efeitos adversos
17.
Int J Radiat Biol ; 95(6): 725-736, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30821557

RESUMO

Purpose: It is important to understand the significance of alpha (α) radiation-induced bystander effects (RIBE) and its relative biological effectiveness (RBE); this is because the phenomenon is not universal and the mechanism is unclear and because the RBE is widely varying and projected to be very high. Materials and methods: Isolated lymphocytes from healthy volunteers (n = 10) were exposed to either low fluence α-particles (241Am), γ-rays (60Co), or X-rays (225 kVp and 6 MV). Co-culture methodology was employed to investigate bystander effects (BEs). Chromosomal aberrations (CA) and micronucleus (MN) formation were used to study the BE and calculated RBE. Results: Lymphocytes directly exposed to the types of radiation used showed a dose-dependent increase in the frequency of CA and MN; dose independent increases in the frequency of these chromosomal damages in co-cultured bystander cells, implies that all three types of radiation-induced a BE. The calculated RBE at the level of 5% induced aberrations varied between 9 and 20. Conclusion: The magnitude of low fluence α-particle induced RIBE is higher than in low LET (linear energy transfer) radiation. The RBE also varies depending upon the endpoints used and adds up to targeted effects. Since the endpoint of CA is considered as an important and early marker of risk prediction, the RIBE and RBE using CA as a marker are relevant for radiation protection purposes.


Assuntos
Partículas alfa/efeitos adversos , Amerício/efeitos adversos , Efeito Espectador/efeitos da radiação , Aberrações Cromossômicas/efeitos da radiação , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Humanos , Linfócitos/citologia , Metáfase/genética , Metáfase/efeitos da radiação , Testes para Micronúcleos , Raios X/efeitos adversos
18.
ACS Omega ; 4(7): 11728-11736, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460279

RESUMO

We report the development of pH-labile ascorbic acid-coated magnetic nanocarriers (AMNCs) for effective delivery of the anticancer drug doxorubicin hydrochloride (DOX) to tumor cells. The uniqueness of this drug delivery system lies in the covalent conjugation of DOX through carbamate and hydrazone bonds, resulting in a slow and sustained drug release profile at different environmental acidities. X-ray diffraction and transmission electron microscopy analyses reveal the formation of crystalline single-phase Fe3O4 nanoparticles with an average size of 10 nm. The changes in the interfacial characteristics of the nanocarriers and the presence of organic coatings are probed by infrared spectroscopy, dynamic light scattering, zeta potential, and thermogravimetric measurements. AMNCs show high colloidal stability in aqueous and cell culture media and possess good magnetic field responsivity and protein resistance characteristics. The drug-loaded nanocarriers exhibited sustained pH-triggered release of drug molecules in acidic mediums, substantial cellular internalization, and significant toxicity toward the proliferation of mouse skin fibrosarcoma (WEHI-164), human breast cancer (MCF-7), and human lung cancer (A549) cells. However, it showed significantly lower toxicity in human normal lung (WI26VA) cells. Overall, these results suggest a pH-sensitive drug release of nanoformulations, which showed selective toxicity to tumor than normal cells.

19.
J Hazard Mater ; 365: 952-961, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30616306

RESUMO

During civil, nuclear or defense activities, internal contamination of actinides in humans and mitigation of their toxic impacts are of serious concern. Considering the health hazards of thorium (Th) internalization, an attempt was made to examine the potential of ten rationally-selected compounds/formulations to decorporate Th ions from physiological systems. The Th-induced hemolysis assay with human erythrocytes revealed good potential of tiron, silibin (SLB), phytic acid (PA) and Liv.52® (L52) for Th decorporation, in comparison to diethylenetriaminepentaacetic acid, an FDA-approved decorporation drug. This was further validated by decorporation experiments with relevant human cell models (erythrocytes and liver cells) and biological fluid (blood) under pre-/post-treatment conditions, using inductively coupled plasma mass spectrometry (ICP-MS) and transmission electron microscopy (TEM). Furthermore, density functional theory-based calculations and extended X-ray absorption fine structure (EXAFS) spectroscopy confirmed the formation of Th complex by these agents. Amongst the chosen biocompatible agents, tiron, SLB, PA and L52 hold promise to enhance Th decorporation for human application.


Assuntos
Materiais Biocompatíveis/metabolismo , Tório/metabolismo , Quelantes/metabolismo , Humanos , Fígado/metabolismo , Tório/sangue
20.
Int J Radiat Biol ; 94(7): 628-644, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29775397

RESUMO

PURPOSE: One of the most important implications of 'Radiation Biology' research is to improve cancer radiotherapy with minimum side effects. In this regard, combination of chemotherapy with radiation has significantly improved tumor control as well as overall survival in a variety of cancers. However, this has been achieved at the cost of significant normal tissue toxicity, due to the lack of specificity of chemotherapy. Membrane-localized receptor tyrosine kinases (RTKs) have been found to play a driving role in various hallmarks of cancer. Moreover, an early successful clinical trial using RTK-antagonist (cetuximab) to improve tumor radiosensitivity has led to an advancement in this field of research. However, a comprehensive review integrating these findings of various oncogenic RTKs, from basic radiobiology-to-radiotherapy clinical trials, is lacking in literature. Therefore, the present review analyses relevant in-vitro, in-vivo, preclinical/clinical studies and postulates the concept of 'Radiation Biology of RTKs in Cancer'. CONCLUSIONS: The present review elucidates the effect of IR on various oncogenic RTKs and their mechanisms, downstream signaling, intracellular translocations, their role in the repair of radiation-induced DNA damage and post-irradiation survival. Based on the knowledge derived from RTK biology and the analysis of relevant clinical trials, this review attempts to identify radiobiological considerations, which could be implemented in future trials, combining radiotherapy with RTK-antagonist. Additionally, we identify the radiosensitizing potential of recently developed RTK-targeted nanoformulations. This review would probably change the Radiation Oncologist's view for translation of tumor-specific radiosensitization in clinic.


Assuntos
Neoplasias/radioterapia , Inibidores de Proteínas Quinases/uso terapêutico , Tolerância a Radiação , Receptores Proteína Tirosina Quinases/fisiologia , Transdução de Sinais/fisiologia , Transporte Ativo do Núcleo Celular , Apoptose , Quimiorradioterapia , Reparo do DNA , Endocitose , Receptores ErbB/antagonistas & inibidores , Humanos , Invasividade Neoplásica , Neoplasias/metabolismo , Transporte Proteico/efeitos da radiação , Receptor IGF Tipo 1/antagonistas & inibidores , Evasão Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA