Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Res ; 259: 119435, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914255

RESUMO

Herein, the study introduces a novel bifunctional In2S3/MgTiO3/TiO2@N-CNT (IMTNC) nanocomposite, which is poised to revolutionize the detection and removal of clothianidin (CLD) from aquatic environments by synergistic adsorption and photodegradation. Confirmation of the material's synthesis was done using structural, optical, morphological, and chemical characterizations. An outstanding sensitivity of 2.168 µA/nM.cm2 with a linear range of 4-100 nM and a LOD of 0.04 nM, along with an exceptional elimination efficiency of 98.06 ± 0.84% for about 10 ppm CLD within 18 min was demonstrated by the IMTNC nanocomposite. Extensive studies were carried out to appraise the material's effectiveness in the presence of various interfering species, such as cations, anions, organic compounds, and different water matrices, and a comprehensive assessment of its stability throughout several cycles was made. Response Surface Methodology (RSM) study was used to determine the ideal removal conditions for improved performance. In addition, the catalytic performance in removing various other pollutants was also analyzed. Adding In2S3 and developing N-doped Carbon Nanotubes (N-CNT) increased conductivity and higher electrochemical sensing skills, improving charge transfer and increasing photocatalytic activity. This research underscores the potential of the IMTNC nanocomposite as a promising candidate for advanced environmental sensing and remediation applications.

2.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542918

RESUMO

Chymotrypsin, a crucial enzyme in human digestion, catalyzes the breakdown of milk proteins, underscoring its significance in both health diagnostics and dairy quality assurance. Addressing the critical need for rapid, cost-effective detection methods, we introduce a groundbreaking approach utilizing far-red technology and HOMO-Förster resonance energy transfer (FRET). Our novel probe, SQ-122 PC, features a unique molecular design that includes a squaraine dye (SQ), a peptide linker, and SQ moieties synthesized through solid-phase peptide synthesis. Demonstrating a remarkable quenching efficiency of 93.75% in a tailored H2O:DMSO (7:3) solvent system, our probe exhibits absorption and emission properties within the far-red spectrum, with an unprecedented detection limit of 0.130 nM. Importantly, our method offers unparalleled selectivity towards chymotrypsin, ensuring robust and accurate enzyme detection. This pioneering work underscores the immense potential of far-red-based homo-FRET systems in enabling the sensitive and specific detection of chymotrypsin enzyme activity. By bridging the gap between cutting-edge technology and biomedical diagnostics, our findings herald a new era of enzyme sensing, promising transformative advancements in disease diagnosis and dairy quality control.


Assuntos
Quimotripsina , Ciclobutanos , Corantes Fluorescentes , Fenóis , Humanos , Corantes Fluorescentes/química , Transferência Ressonante de Energia de Fluorescência/métodos , Peptídeos/química
3.
Environ Res ; 235: 116573, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437865

RESUMO

Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.


Assuntos
Sistemas CRISPR-Cas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Edição de Genes , Linfócitos T/metabolismo
4.
Environ Res ; 234: 116556, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414389

RESUMO

The extremely widespread and ubiquitous nature of plastics, estimated to boost its global production by 26 billion tons till 2050. The large chunks of plastic waste that decomposed down to micro- or nano plastics (MNPs) leads to various ill effects on biological entities. The conventional PET detection methods lack rapid detection of microplastics due to variances in microplastic features, long-drawn-out sample pre-processing procedures and complex instrumentation. Therefore, an instantaneous colorimetric evaluation of microplastic will ensures the simplicity of conducting assays on field. Several nanoparticle-based biosensors that detects proteins, nucleic acids, metabolites operate on either cluster or disperse state of nanoparticle. However, gold nanoparticle (AuNPs) emerges an ideal scaffold for sensory element in lateral flow biosensors due to their simple surface functionalization, unique optoelectronic properties and varied colour spectrum depending on morphologies and aggregation state. In this paper an effort has been made in the form of a hypothesis using in silico tools as a basis to detect polyethylene terephthalate (PET) - most abundant type of microplastic using gold nanoparticle based lateral flow biosensor. We retrieved sequences of PET-binding synthetic peptides and modelled their 3-D structure using I-Tasser server. The best protein model for each peptide sequences are docked with PET monomers - BHET, MHET and other PET polymeric ligands, to evaluate their binding affinities. The synthetic peptide SP 1 (WPAWKTHPILRM) docked with BHET and (MHET)4 exhibits 1.5-fold increases in binding affinity as compared to reference PET anchor peptide Dermaseptin SI (DSI). The GROMACS molecular dynamics simulation studies of synthetic peptide SP 1 - BHET & - (MHET)4 complexes for 50 ns further confirmed the stable binding. RMSF, RMSD, hydrogen bonds, Rg and SASA analysis provides useful structural insights of the SP 1 complexes as compared to reference DSI. Furthermore, SP 1 functionalized AuNP-based colorimetric device was described in detail for detection of PET.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Microplásticos , Plásticos/análise , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Ouro , Colorimetria , Polietileno
5.
Sensors (Basel) ; 23(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067772

RESUMO

This paper aims to enhance the capacitance of electroactive polymer (EAP)-based strain sensors. The enhancement in capacitance was achieved by using a free-standing stretchable polymer film while introducing conducting polymer to fabricate a hybrid dielectric film with controlled conductivity. In this work, styrene-ethylene-butylene-styrene (SEBS) rubber was used as the base material, and dodecyl benzene sulfonate anion (DBSA)-doped polyaniline (PANI) was used as filler to fabricate a hybrid composite conducting film. The maleic anhydride group of the SEBS Rubber and DBSA, the anion of the polyaniline dopant, make a very stable dispersion in Toluene and form a free-standing stretchable film by solution casting. DBSA-doped polyaniline increased the conductivity and dielectric constant of the dielectric film, resulting in a significant enhancement in the capacitance of the EAP-based strain sensor. The sensor presented in this article exhibits capacitance values ranging from 24.7 to 100 µF for strain levels ranging from 0 to 100%, and sensitivity was measured 3 at 100% strain level.

6.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985755

RESUMO

Bifacial dye-sensitized solar cells (DSSCs) were fabricated utilizing dye cocktails of two dyes, Z-907 and SQ-140, which have complementary light absorption and photon harvesting in the visible and near-infrared wavelength regions, for panchromatic photon harvesting. The investigation of the rate of dye adsorption and the binding strengths of the dyes on mesoporous TiO2 corroborated the finding that the Z-907 dye showed a rate of dye adsorption that was about >15 times slower and a binding that was about 3 times stronger on mesoporous TiO2 as compared to SQ-140. Utilizing the dye cocktails Z-907 and SQ-140 from ethanol, the formation of the dye bilayer, which was significantly influenced by the ratio of dyes and adsorption time, was demonstrated. It was demonstrated that the dyes of Z-907 and SQ-140 prepared in 1:9 or 9:1 molar ratios favoured the dye bilayer formation by subtly controlling the adsorption time. In contrast, the 1:1 ratio counterpart was prone to form mixed dye adsorption; the best performance of the BF-DSSCs was shown when a dye cocktail of Z-907 and SQ-140 in a molar 9:1 ratio was used to prepare a photoanode for 1 h of dye adsorption. The BF-DSSCs thus exhibited PCEs of 4.23% and 3.48% upon the front and rear side light illuminations, a cumulated PCE of 7.71%, and a very good BBF of 83%.

7.
Molecules ; 27(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235113

RESUMO

Synthesis and characterization of a novel and zwitterionic double squaraine dye (DSQ) with a unique D-A-A-D structure is being reported. Contrary to the conventional mono and bis-squaraine dyes with D-A-D and D-A-D-A molecular frameworks reported so far, DSQ dye demonstrated strong solvatochromism allowing for the multiple ion sensing using a single probe by judicious selection of the suitable solvent system. The DSQ dye exhibited a large solvatochromic shift of about 200 nm with color changes from the visible to NIR region with metal ion sensitivity. Utilization of a binary solvent consisted of dimethylformamide and acetonitrile (1:99, v/v), highly selective detection of Cu2+ ions with the linearity range from 50 µM to 1 nM and a detection limit of 6.5 × 10-10 M has been successfully demonstrated. Results of the Benesi-Hildebrand and Jobs plot analysis revealed that DSQ and Cu2+ ions interact in the 2:1 molecular stoichiometry with appreciably good association constant of 2.32 × 104 M-1. Considering the allowed limit of Cu2+ ions intake by human body as recommended by WHO to be 30 µM, the proposed dye can be conveniently used for the simple and naked eye colorimetric monitoring of the drinking water quality.


Assuntos
Água Potável , Corantes Fluorescentes , Acetonitrilas/análise , Cobre/análise , Ciclobutanos , Dimetilformamida , Água Potável/análise , Corantes Fluorescentes/química , Humanos , Íons/análise , Fenóis , Solventes/análise
8.
Bioorg Med Chem Lett ; 27(17): 4024-4029, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28784293

RESUMO

Extended wavelength analyte-responsive fluorescent probes are highly desired for the imaging applications owing to their deep tissue penetration, and minimum interference from autofluorescence by biomolecules. Near infra-red (NIR) sensitive and self-quenching fluorescent probe based on the dye-peptide conjugate (SQ 1 PC) was designed and synthesized by facile and efficient one-pot synthetic route for the detection of Elastase activity. In the phosphate buffer solution, there was an efficient quenching of fluorescence of SQ 1 PC (86%) assisted by pronounced dye-dye interaction due to H-aggregate formation. Efficient and fast recovery of this quenched fluorescence of SQ 1 PC (> 50% in 30s) was observed on hydrolysis of this peptide-dye conjugate by elastase enzyme. Presently designed NIR sensitive self-quenching substrate offers the potential application for the detection of diseases related to proteases by efficient and fast detection of their activities.


Assuntos
Fluorescência , Corantes Fluorescentes/química , Elastase Pancreática/análise , Peptídeos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/metabolismo , Humanos , Raios Infravermelhos , Estrutura Molecular , Elastase Pancreática/metabolismo , Peptídeos/metabolismo , Espectrometria de Fluorescência , Relação Estrutura-Atividade
9.
Polymers (Basel) ; 16(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38475398

RESUMO

Extended π-conjugation with backbone-planarity-driven π-π stacking dominates charge transport in semiconducting polymers (SCPs). The roles of SCP film morphology and macromolecular conformation concerning the substrate in influencing charge transport and its impact on device performance have been a subject of extensive debate. Face-on SCPs promote out-of-plane charge transport primarily through π-π stacking, with conjugated polymeric chains assisting transport in connecting crystalline domains, whereas edge-on SCPs promote in-plane charge transport primarily through conjugation and π-π stacking. In this work, we fabricated three different types of devices, namely, organic field effect transistors, organic Schottky diodes, and organic bistable memristors, as representatives of planar and vertical devices. We demonstrate that a planar device, i.e., an organic field effect transistor, performs well in an edge-on conformation exhibiting a field-effect mobility of 0.12 cm2V-1s-1 and on/off ratio >104, whereas vertical devices, i.e., organic Schottky diodes and organic memristors, perform well in a face-on conformation, exhibiting exceptionally high on/off ratios of ~107 and 106, respectively.

10.
ACS Appl Bio Mater ; 7(1): 416-428, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38112180

RESUMO

The increasing demand for reliable near-infrared (NIR) probes exhibiting enduring fluorescence in living systems and facile compatibility with biomolecules such as peptides, antibodies or proteins is driven by the increasing use of NIR imaging in clinical diagnostics. To address this demand, a series of carboxy-functionalized unsymmetrical squaraine dyes (SQ-27, SQ-212, and SQ-215) along with non-carboxy-functionalized SQ-218 absorbing and emitting in the NIR wavelength range were designed and synthesized followed by photophysical characterization. This study focused on the impact of structural variations in the alkyl chain length, carboxy functionality positioning, and spacer chain length on dye aggregation and interaction with bovine serum albumin (BSA) as a model protein. In phosphate buffer (PB), the absorption intensity of the dyes markedly decreased accompanied by pronounced shoulders indicative of dye aggregation, and complete fluorescence quenching was seen in contrast to organic solvents. However, in the presence of BSA in PB, there was a enhancement in absorption intensity while regaining the fluorescence coupled with a remarkable increase in the intensity with increasing BSA concentrations, signifying the impact of dye-BSA interactions on preventing aggregation. Further analysis of Job's plot unveiled a 2:1 interaction ratio between BSA and all dyes, while the binding studies revealed a robust binding affinity (Ka) in the order of 107/mol. SQ-212 and SQ-215 were further tested for their in vitro and in vivo imaging capabilities. Notably, SQ-212 demonstrated nonpermeability to cells, while SQ-215 exhibited easy penetration and prominent cytoplasmic localization in in vitro studies. Injection of the dyes into laboratory mice showcased their efficacy in visualization, displaying stable and intense fluorescence in tissues without toxicity, organ damage, or behavioral changes. Thus, SQ-212 and SQ-215 are promising candidates for imaging applications, holding potential for noninvasive cellular and diagnostic imaging as well as biomarker detection when coupled with specific vectors in living systems.


Assuntos
Ciclobutanos , Corantes Fluorescentes , Animais , Camundongos , Corantes Fluorescentes/química , Soroalbumina Bovina/química , Ciclobutanos/química , Fenóis
11.
Micromachines (Basel) ; 15(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38930647

RESUMO

Conjugated polymers (CPs) offer the potential for sustainable semiconductor devices due to their low cost and inherent molecular self-assembly. Enhanced crystallinity and molecular orientation in thin films of solution-processable CPs have significantly improved organic electronic device performance. In this work, three methods, namely spin coating, dip coating, and unidirectional floating-film transfer method (UFTM), were utilized with their parametric optimization for fabricating RR-P3HT films. These films were then utilized for their characterization via optical and microstructural analysis to elucidate dominant roles of molecular orientation and crystallinity in controlling charge transport in organic field-effect transistors (OFETs). OFETs fabricated by RR-P3HT thin films using spin coating and dip coating displayed field-effect mobility (µ) of 8.0 × 10-4 cm2V-1s-1 and 1.3 × 10-3 cm2V-1s-1, respectively. This two-time enhancement in µ for dip-coated films was attributed to its enhanced crystallinity. Interestingly, UFTM film-based OFETs demonstrated µ of 7.0 × 10-2 cm2V-1s-1, >100 times increment as compared to its spin-coated counterpart. This superior device performance is attributed to the synergistic influence of higher crystallinity and molecular orientation. Since the crystallinity of dip-coated and UFTM-thin films are similar, ~50 times improved µ of UFTM thin films, this suggests a dominant role of molecular orientation as compared to crystallinity in controlling the charge transport.

12.
ACS Appl Mater Interfaces ; 16(17): 22282-22293, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38644562

RESUMO

Nonvolatile organic memristors have emerged as promising candidates for next-generation electronics, emphasizing the need for vertical device fabrication to attain a high density. Herein, we present a comprehensive investigation of high-performance organic memristors, fabricated in crossbar architecture with PTB7/Al-AlOx-nanocluster/PTB7 embedded between Al electrodes. PTB7 films were fabricated using the Unidirectional Floating Film Transfer Method, enabling independent uniform film fabrication in the Layer-by-Layer (LbL) configuration without disturbing underlying films. We examined the charge transport mechanism of our memristors using the Hubbard model highlighting the role of Al-AlOx-nanoclusters in switching-on the devices, due to the accumulation of bipolarons in the semiconducting layer. By varying the number of LbL films in the device architecture, the resistance of resistive states was systematically altered, enabling the fabrication of novel multilevel memristors. These multilevel devices exhibited excellent performance metrics, including enhanced memory density, high on-off ratio (>108), remarkable memory retention (>105 s), high endurance (87 on-off cycles), and rapid switching (∼100 ns). Furthermore, flexible memristors were fabricated, demonstrating consistent performance even under bending conditions, with a radius of 2.78 mm for >104 bending cycles. This study not only demonstrates the fundamental understanding of charge transport in organic memristors but also introduces novel device architectures with significant implications for high-density flexible applications.

13.
Phys Chem Chem Phys ; 15(34): 14370-6, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23877400

RESUMO

The charge separation and charge recombination dynamics in P3HT-ZnO and P3HT-dye-ZnO bulk heterojunction organic-inorganic hybrid solar cells (OIHSCs) prepared by a one-pot method were studied using a transient absorption (TA) method, both for optical absorption of P3HT in the visible region and for optical absorption of SQ36 in the NIR region. In the case of P3HT-ZnO, the charge separation was very fast, occurring within 1 ps. On the other hand, high charge recombination between electrons in the surface states and/or the conduction band of ZnO and holes in P3HT was observed. In the case of P3HT-dye-ZnO, we found that the charge recombination could be greatly suppressed by locating the dye at the P3HT/ZnO interfaces while maintaining a fast charge separation rate (a few ps to 10 ps). Our findings provide one methodology for the design of OIHSCs for improving their conversion efficiency, which is to position the dye at the appropriate BHJ interfaces.

14.
ACS Appl Bio Mater ; 6(11): 4549-4571, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37852204

RESUMO

Silver nanoparticles developed via biosynthesis are the most fascinating nanosized particles and encompassed with excellent physicochemical properties. The bioinspired nanoparticles with different shapes and sizes have attracted huge attention due to their stability, low cost, environmental friendliness, and use of less hazardous chemicals. This is an ideal method for synthesizing a range of nanosized metal particles from plants and biomolecules. Optical biosensors are progressively being fabricated for the attainment of sustainability by using opportunities offered by nanotechnology. This review focuses mainly on tuning the optical properties of the metal nanoparticles for optical sensing to explore the importance and applications of bioinspired silver nanoparticles. Further, this review deliberates the role of bioinspired silver nanoparticles (Ag NPs) in biomedical, agricultural, environmental, and energy applications. Profound insight into the antimicrobial properties of these nanoparticles is also appreciated. Tailor-made bioinspired nanoparticles with effectuating characteristics can unsurprisingly target tumor cells and distribute enwrapped payloads intensively. Existing challenges and prospects of bioinspired Ag NPs are also summarized. This review is expected to deliver perceptions about the progress of the next generation of bioinspired Ag NPs and their outstanding performances in various fields by promoting sustainable practices for fabricating optical sensing devices.


Assuntos
Nanopartículas Metálicas , Prata , Nanotecnologia
15.
Int J Biol Macromol ; 253(Pt 8): 127587, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37866579

RESUMO

Neurodegenerative disorders are one of the significant challenges to the aging society, as per the United Nations, where 1 in 6 people globally over 65 years of age are expected to suffer by 2050. The exact pathophysiological root of these disorders is although not known adequately, but reduced dopamine (most significant neurotransmitters) levels have been reported in people affected by Parkinson's disease. Sensitive detection and effective monitoring of dopamine can help to diagnose these neurodegenerative disorders at a very early stage, which will help to properly treat these disorders and slow down their progression. Therefore, it is crucial to detect physiological and clinically acceptable amounts of dopamine with high sensitivity and selectivity in basic pathophysiology research, medication, and illness diagnosis. Here in this present investigation, nano-bio-engineered stable chitosan stabilized copper iodide nanoparticles (CS@CuI NPs) were synthesized to engineer the active biosensing platform for developing dopamine biosensors. Initially, the as-synthesized nano-bio-engineered CS@CuI NPs were subjected to its drop-casting onto an Indium tin oxide (ITO) conducting glass substrate. This substrate platform was then utilized to immobilize tyrosinase (Tyr) enzyme by drop-casting to fabricate Tyr/CS@CuI NPs/ITO bioelectrode for the ultrasensitive determination of dopamine. Several techniques were used to characterize the structural, optical, and morphological properties of the synthesized CS@CuI NPs and Tyr/CS@CuI NPs/ITO bioelectrode. Further, the as-prepared bioelectrode was evaluated for its suitability and electrocatalytic behaviour towards dopamine by cyclic voltammetry. A perusal of the electroanalytic results of the fabricated biosensor revealed that under the optimized experimental conditions, Tyr/CS@CuI NPs/ITO bioelectrode exhibits a very high electrochemical sensitivity of 11.64 µA µM-1 cm-2 towards dopamine with the low limit of detection and quantification of 0.02 and 0.386 µM, respectively. In addition, the fabricated bioelectrode was stable up to 46 days with only 4.82 % current loss, reusable till 20 scans, and it also performed effectively while real sample analysis. Therefore, the nano-bio-engineered biosensor platform being reported can determine deficient dopamine levels in a very selective and sensitive manner, which can help adequately manage neurodegenerative disorders, further slowing down the disease progression.


Assuntos
Técnicas Biossensoriais , Quitosana , Nanopartículas , Doenças Neurodegenerativas , Humanos , Quitosana/química , Dopamina , Cobre , Iodetos , Nanopartículas/química , Monofenol Mono-Oxigenase , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos
16.
Materials (Basel) ; 16(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569953

RESUMO

The fabrication of high-performance Organic Phototransistors (OPTs) by depositing Al-islands atop Poly(3-hexylthiophene) (P3HT) thin film coated using the unidirectional floating-film transfer method (UFTM) has been realized. Further, the effect of Al-island thickness on the OPTs' performance has been intensively investigated using X-ray photoelectron spectroscopy, X-ray Diffraction, Atomic force microscopy and UV-Vis spectroscopy analysis. Under the optimized conditions, OPTs' mobility and on-off ratio were found to be 2 × 10-2 cm2 V-1 s-1 and 3 × 104, respectively. Further, the device exhibited high photosensitivity of 105, responsivity of 339 A/W, detectivity of 3 × 1014 Jones, and external quantum efficiency of 7.8 × 103% when illuminated with a 525 nm LED laser (0.3 mW/cm2).

17.
Phys Chem Chem Phys ; 14(13): 4605-13, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22354497

RESUMO

Understanding the electron transfer dynamics at the interface between dye sensitizer and semiconductor nanoparticle is very important for both a fundamental study and development of dye-sensitized solar cells (DSCs), which are a potential candidate for next generation solar cells. In this study, we have characterized the ultrafast photoexcited electron dynamics in a newly produced linearly-linked two dye co-sensitized solar cell using both a transient absorption (TA) and an improved transient grating (TG) technique, in which tin(IV) 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (NcSn) and cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) bis(tetrabutylammonium) (N719) are molecularly and linearly linked and are bonded to the surface of a nanocrystalline tin dioxide (SnO(2)) electrode by a metal-O-metal linkage (i.e. SnO(2)-NcSn-N719). By comparing the TA and TG kinetics of NcSn, N719, and hybrid NcSn-N719 molecules adsorbed onto both of the SnO(2) and zirconium dioxide (ZrO(2)) nanocrystalline films, the forward and backward electron transfer dynamics in SnO(2)-NcSn-N719 were clarified. We found that there are two pathways for electron injection from the linearly-linked two dye molecules (NcSn-N719) to SnO(2). The first is a stepwise electron injection, in which photoexcited electrons first transfer from N719 to NcSn with a transfer time of 0.95 ps and then transfer from NcSn to the conduction band (CB) of SnO(2) with two timescales of 1.6 ps and 4.2 ps. The second is direct photoexcited electron transfer from N719 to the CB of SnO(2) with a timescale of 20-30 ps. On the other hand, back electron transfer from SnO(2) to NcSn is on a timescale of about 2 ns, which is about three orders of magnitude slower compared to the forward electron transfer from NcSn to SnO(2). The back electron transfer from NcSn to N719 is on a timescale of about 40 ps, which is about one order slower compared to the forward electron transfer from N719 to NcSn. These results demonstrate that photoexcited electrons can be effectively injected into SnO(2) from both of the N719 and NcSn dyes.


Assuntos
Corantes/química , Simulação de Dinâmica Molecular , Nanoestruturas/química , Compostos Organometálicos/química , Energia Solar , Compostos de Estanho/química , Zircônio/química , Eletrodos , Elétrons
18.
ACS Appl Mater Interfaces ; 13(32): 38534-38543, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34357757

RESUMO

Layer-by-layer fabrication of uniformly oriented thin films over large areas by cost-effective solution-based approaches can open new horizons for the realization of high-performance organic circuits in various applications. In this work, fabrication of a large-area ≈40 cm2 film with uniform orientation is reported for poly(3,3‴-dialkylquaterthiophene) (PQT) using a unidirectional floating film transfer method (UFTM). Orientation characteristics and charge transport anisotropy were analyzed using polarized UV-vis spectral mapping and fabrication of bottom-gated organic field-effect transistors (OFETs) from different regions. Films were found to be highly oriented with an optical dichroic ratio of ca. 15. Orientation characteristics reveal that films were highly oriented along the width of the film, covering >70% of the area, and angle-dependent field-effect mobilities are in good agreement with the orientation of the polymer backbones. These highly oriented films resulted in charge transport anisotropy of 8.9. An array of bottom-gated OFETs fabricated along the length of single large-area (≈15 × 2.5 cm2) thin film demonstrated the average field-effect mobility of 0.0262 cm2/(V s) with a very narrow standard deviation of 12.6%. We also demonstrated that film thickness can be easily tuned from 5.6 to 45 nm by increasing the PQT concentration, and field-effect mobility is highly reproducible even when the film thickness is 10 nm. Microstructural characterization of the thus-prepared large-area thin films revealed the edge-on stacked polymer backbones and surface roughness of <1 nm as probed by grazing incidence X-ray diffraction and atomic force microscopy, respectively. Flexible OFETs with bottom-gate top-contact geometry were also fabricated, having average field-effect mobility of 0.0181 cm2/(V s). There was no considerable change in mobility after bending the flexible devices at different radii.

19.
Can J Surg ; 53(1): 6-10, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20100406

RESUMO

BACKGROUND: Chronic nonhealing wounds are difficult to manage. Various substances are being used to heal these wounds. We sought to observe the effects of autologous epidermal cell suspension dressings on chronic nonhealing ulcers. METHODS: We enrolled patients of the wound clinic at University Hospital, Varanasi, India, with nonhealing wounds of more than 6 weeks' duration. We treated the wound beds with sterile dressings and antibiotics until the swab cultures became sterile. We prepared autologous epidermal cell suspensions from skin grafts and used them on the ulcer beds along with Vaseline gauze dressings. Follow-up visits with patients occurred weekly for assessment of wound healing and other changes. RESULTS: Fifteen patients enrolled in our study. Of these, 6 patients had completely healed at 12 weeks, 1 patient at 16 weeks and 2 patients at 20 weeks after treatment. We observed a slow healing response in 6 patients, of whom 1 patient had healed completely at 32 weeks and another at 48 weeks. One patient needed skin grafting, and 3 patients were lost to follow-up. CONCLUSION: Autologous noncultured epidermal cell suspension transplantation seems to be an effective, simple and time-saving method to treat chronic nonhealing wounds.


Assuntos
Bandagens , Queratinócitos/transplante , Úlcera Cutânea/terapia , Cicatrização/fisiologia , Adolescente , Adulto , Idoso , Criança , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Úlcera Cutânea/microbiologia , Infecções Cutâneas Estafilocócicas/terapia , Técnicas de Cultura de Tecidos , Transplante Autólogo , Adulto Jovem
20.
Sci Rep ; 10(1): 20020, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208776

RESUMO

An ordered arrangement of electron-accepting molecular dopant, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), in three-dimensionally (3D) oriented poly(3-hexylthiophene) (P3HT) film was clarified. The 3D oriented P3HT thin films prepared by the friction-transfer technique were doped with F4TCNQ by dipping into an acetonitrile solution. The presence of F4TCNQ anions in the 3D oriented P3HT thin films was investigated by polarized ultraviolet/visible/near-infrared absorption spectroscopy, grazing incidence X-ray diffractometry, polarized Fourier transform infrared spectroscopy (FT-IR), and infrared p-polarized multiple-angle incidence resolution spectroscopy (pMAIRS). The F4TCNQ-doped 3D oriented P3HT films showed anisotropic properties in all characterizations. In particular, the anisotropic molecular vibrations from polarized FT-IR and pMAIRS have clearly revealed orientations of polymeric chains and molecular dopant molecules. Considering the results from several independent techniques indicated that F4TCNQ anions in the 3D oriented P3HT were orderly arranged in a 3D manner with respect to the 3D oriented P3HT such that their molecular long-axis parallel to the P3HT backbone, with in-plane molecular orientation. Additionally, the direction of the optical transition moment of the F4TCNQ anion was found to be parallel to the molecular short-axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA