Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 242(6): 2652-2668, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649769

RESUMO

Development of protein-enriched chickpea varieties necessitates an understanding of specific genes and key regulatory circuits that govern the synthesis of seed storage proteins (SSPs). Here, we demonstrated the novel involvement of Ca-miR164e-CaNAC100 in regulating SSP synthesis in chickpea. Ca-miRNA164e was significantly decreased during seed maturation, especially in high-protein accessions. The miRNA was found to directly target the transactivation conferring C-terminal region of a nuclear-localized transcription factor, CaNAC100 as revealed using RNA ligase-mediated-rapid amplification of cDNA ends and target mimic assays. The functional role of CaNAC100 was demonstrated through seed-specific overexpression (NACOE) resulting in significantly augmented seed protein content (SPC) consequential to increased SSP transcription. Further, NACOE lines displayed conspicuously enhanced seed weight but reduced numbers and yield. Conversely, a downregulation of CaNAC100 and SSP transcripts was evident in seed-specific overexpression lines of Ca-miR164e that culminated in significantly lowered SPC. CaNAC100 was additionally demonstrated to transactivate the SSP-encoding genes by directly binding to their promoters as demonstrated using electrophoretic mobility shift and dual-luciferase reporter assays. Taken together, our study for the first time established a distinct role of CaNAC100 in positively influencing SSP synthesis and its critical regulation by CamiR164e, thereby serving as an understanding that can be utilized for developing SPC-rich chickpea varieties.


Assuntos
Cicer , Regulação da Expressão Gênica de Plantas , MicroRNAs , Proteínas de Armazenamento de Sementes , Sementes , Fatores de Transcrição , Cicer/genética , Cicer/metabolismo , Cicer/crescimento & desenvolvimento , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Armazenamento de Sementes/metabolismo , Proteínas de Armazenamento de Sementes/genética , Sementes/metabolismo , Sementes/genética , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sequência de Bases , Ativação Transcricional/genética , Plantas Geneticamente Modificadas
2.
Int J Phytoremediation ; 26(9): 1518-1525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563239

RESUMO

Heavy metal-enriched fly ash (FA) deposits are recognized as hazardous contaminated sites on the earth, which pollute our ecosystems. Consequently, the present investigation was carried out to explore the phytoremediation potential of naturally growing medicinal plants in the FA dumpsite. This present study chose two native medicinal plants i.e., Bacopa monnieri and Acmella oleracea found to be naturally colonizing abundantly on FA dumpsite to assess heavy metal accumulation. FA sample of B. monnieri thriving sites found to have metal content in order Mn (216.6)> Cr (39.27)> Zn (20.8)> Ni (16.1)> Cu (15.03)> Co (6.7)> Pb (5.43) whereas for A. oleracea FA dumpsites, the order of metal availability was Mn (750.3)> B (54.5)>Cr (37.2)>Zn (31.33)> Cu (18.7)> Ni (16.93)> Co (7.7)>Pb (4.23). In B. monnieri, higher concentrations of Cr and Mn were observed in the shoot in comparison to the root, indicative of its potential as a hyperaccumulator plant. Conversely, in A. oleracea, greater amounts of Pb were detected in the shoot relative to the root. Hence, it is recommended that B. monnieri and A. oleracea grow on such heavy metal-enriched substrates should be avoided for medicinal purposes; however, these plants can be used for phytoremediation purposes.


Fly ash phytoremediation through natural colonizer plant species is limited.Native colonizing plant species on fly ash has a pivotal role in phytoremediation.Naturally colonizing medicinal plants were dominant over the Fly ash dumpsites.Bacopa monnieri and Acmella oleracea have phytoremediation potential on fly ash.Indeed, fly ash-grown medicinal plants should not be used by local communities.


Assuntos
Biodegradação Ambiental , Cinza de Carvão , Metais Pesados , Plantas Medicinais , Poluentes do Solo , Plantas Medicinais/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Bacopa/metabolismo
3.
Environ Geochem Health ; 45(2): 319-332, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34403046

RESUMO

Fly ash is an inevitable by-product from the coal-fired power plants in many developing countries including India that needs safe, timely and productive disposal. The addition of fly ash alters physicochemical properties of soil and hence could be used as a soil conditioner or modifier along with the appropriate level of vermicompost to support plant growth. Several studies have focalized sole use of fly ash and vermicompost in agricultural production systems lacking information on combined application effects. This work was carried out at Chiplima in the district of Sambalpur, Odisha, India, to ascertain the best suited combination of native soil, fly ash and vermicompost (from farmyard manure) for rice nursery based on the changing physicochemical properties and seedling growth. The experiment consisting of 21 treatment combinations of soil, fly ash and vermicompost at 0%, 20%, 40%, 60%, 80% and 100% by weight was laid out in a factorial complete randomized design with three replications. Fly ash and vermicompost at moderate concentrations significantly ameliorated the physical properties, viz., porosity, bulk and particle densities, water holding capacity, infiltration rate and the capillary rise of water in rice nursery soil that ultimately resulted in vigorous rice seedlings at 40 DAS through beneficial soil biota as well as better root and shoot development. The porosity, water holding capacity and infiltration rate significantly increased with the addition of vermicompost while fly ash addition substantially reduced them. Fly ash and vermicompost in moderate quantities smothered soil chemical properties like electrical conductivity and organic carbon that increased the availability of N, P, K, B, S and Zn. The pH did not differ significantly due to treatment effects owing to a marginal difference in pH of the substrates, whereas electrical conductivity increased significantly with only marginal addition of fly ash to vermicompost. Considering the economic feasibility and environmental impacts, 40% soil + 20% fly ash + 40% vermicompost may be recommend to the farmers for wet rice nursery raising and also for remediating the coal fly ash in agricultural production system.


Assuntos
Oryza , Solo , Solo/química , Cinza de Carvão/análise , Plântula , Carvão Mineral
4.
Land Degrad Dev ; 34(5): 1538-1548, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37485419

RESUMO

Hyperaccumulators' ability to take up large quantities of harmful heavy metals from contaminated soils and store them in their foliage makes them promising organisms for bioremediation. Here we demonstrate that some ecotypes of the zinc hyperaccumulator Arabidopsis halleri are more suitable for bioremediation than others, because of their distinct influence on soil biota. In a field experiment, populations originating from metal-polluted and unpolluted soils were transplanted to a highly contaminated metalliferous site in Southern Poland. Effects of plant ecotypes on soil biota were assessed by measurements of feeding activity of soil fauna (bait-lamina test) and catabolic activity and functional diversity of soil bacteria underneath A. halleri plants (Biolog® ECO plates). Chemical soil properties, plant morphological parameters, and zinc concentration in shoots and roots were additionally evaluated. Higher soil fauna feeding activity and higher bacterial community functional diversity were found in soils affected by A. halleri plants originating from metallicolous compared to non-metallicolous ecotypes. Differences in community-level physiological profiles further evidenced changes in microbial communities in response to plant ecotype. These soil characteristics were positively correlated with plant size. No differences in zinc content in shoots and roots, zinc translocation ratio, and plant morphology were observed between metallicolous and non-metallicolous plants. Our results indicate strong associations between A. halleri ecotype and soil microbial community properties. In particular, the improvement of soil biological properties by metallicolous accessions should be further explored to optimize hyperaccumulator-based bioremediation technologies.

5.
Genomics ; 113(6): 4313-4326, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34801685

RESUMO

Chickpea shoot exogenously treated with cytokinin showed stunted phenotype of root, shoot and significantly reduced nodule numbers. Genome-wide identification of LRR-RLKs in chickpea and Medicago resulted in 200 and 371 genes respectively. Gene duplication analysis revealed that LRR-RLKs family expanded through segmental duplications in chickpea and tandem duplications in Medicago. Expression profiling of LRR-RLKs revealed their involvement in cytokinin signaling and plant organ development. Overexpression of KLAVIER ortholog of chickpea, Ca_LRR-RLK147, in roots revealed its localization in the membrane but showed no effect on root nodulation despite increased cle peptide levels. Two findings (i) drastic effect on nodule number by exogenous cytokinin treatment to only shoot and restoration to normal nodulation by treatment to both root and shoot tissue and (ii) no effect on nodule number by overexpression of Ca_LRR-RLK147 establishes the fact that despite presence of cle peptides in root, the function of Ca_LRR-RLK147 was shoot mediated during AON.


Assuntos
Cicer , Cicer/genética , Cicer/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Simbiose/genética
6.
Bull Environ Contam Toxicol ; 108(3): 389-395, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32974764

RESUMO

Plant species possess a huge potential in restoration of fly ash ecosystem. Litter deposition and its decomposition in the ash deposited sites are two important processes of the fly ash ecosystem. In order to identify the biological potential of a plant species to aid restoration of fly ash deposited sites, it is needed to assess leaf litter decomposition as well as nutrient release pattern. In the present investigation, we studied the leaf litter decomposition of the plant species (Leucaena leucocephala, Pithecellobium dolce and Prosopis juliflora) and mix plantation in the fly ash ecosystem. The litter bag experiment was conducted in the area of plantation on the fly ash deposited site during a period of 365 days. Percentage of C and N was higher in L. leucocephala > P. dolce >Mix Plantation > P. juliflora while C/N ratio was higher in P. juliflora >Mix Plantation > L. leucocephala > P. dolce. L. leucocephala and P. dolce showed relatively fast decomposition rates (k = 1.27, 1.17), respectively while mix plantation (k = 0.82) and P. juliflora (k = 0.73) exhibited relatively slower decomposition rates. Thus, we noted that the decomposition rate of L. leucocephala was greater than the other selected species. This shows that the species having faster decomposition rate and nutrient release could be a factual choice for rehabilitation of fly ash deposited sites.


Assuntos
Ecossistema , Fabaceae , Cinza de Carvão , Nitrogênio/análise , Folhas de Planta/química
7.
Bull Environ Contam Toxicol ; 108(3): 485-490, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33950268

RESUMO

The current study focused on the pollution remediation of textile industry wastewater by using Chlorella pyrenoidosa in two different physical forms: free algal biomass and immobilized algal biomass. The hypothesis behind the present study was to analyze the pollution reduction efficiency of immobilized algal biomass and free algal biomass on comparative scale on the basis of the adsorption process which is directly proportional with the surface area of the adsorbate. So, in this context the immobilized form of algae could enhance the pollution reduction efficiency due to availability of more surface area. So, the textile industry wastewater was treated by both free algal biomass and immobilized algal biomass and the major wastewater contributors like nitrate, phosphate, Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) were assessed before and after the treatment process. To conclude the optimum comparative results, the pH of wastewater was maintained constant, as it can capitalize or moderate the adsorption process (initial pH of was 8.2 ± 0.1, but it was maintained to 8). The contamination remediation was found to be effective with immobilized algal biomass (46.7% of nitrate, 59.4% of phosphate, 83.1% BOD and 83.0% of COD) than free algal biomass (43.2% of nitrate, 56.7% of phosphate, 71.4% of BOD and 78.0% COD).


Assuntos
Chlorella , Águas Residuárias , Biomassa , Concentração de Íons de Hidrogênio , Indústria Têxtil
8.
Bull Environ Contam Toxicol ; 108(3): 468-477, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33860803

RESUMO

The soil samples of old Zawar mine sites were sandy texture, basic, electric conductivity range from 16 to 59 dSm-1 with a high content of heavy metals of Zn, Pb, Cd, and Fe, indicating poor soil-health. Two bacterial isolates Pseudomonas aeruginosa HMR1 and P. aeruginosa HMR16 (GenBank-accession-number KJ191700 and KU174205, respectively), differed in the Phylogenetic tree based on 16S-rDNA sequences. HMR1 isolate showed the high potential of Plant growth-promoting attributes like IAA, Phosphate-solubilization, Exopolysaccharide production, and Proline activities at high concentration of Zn augmented nutrient media after 24 h, followed by HMR1 + HMR16 and HMR16. Both isolates were survived at 100 ppm Zn (w/v) concentration, followed by Pb, Cd, and Fe. Linear RL value from Langmuir and Freundlich isotherms revealed that the suitable condition of Zn adsorption by HMR1 was at pH8 with 40°C. The value of r2 from pseudo-second-order kinetics and Transmission-Electron-Microscopic analysis confirmed Zn adsorption by HMR1.


Assuntos
Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Filogenia , Pseudomonas aeruginosa , Solo , Poluentes do Solo/análise , Zinco/análise
9.
Plant Biotechnol J ; 19(12): 2415-2427, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34146435

RESUMO

The critical role of cytokinin in early nodulation in legumes is well known. In our study, exogenous cytokinin application to roots of the important crop legume, chickpea (Cicer arietinum L.), led to the formation of pseudo-nodules even in the absence of rhizobia. Hence, a genome-wide analysis of the cytokinin signalling, two-component system (TCS) genes, was conducted in chickpea, Medicago and Cajanus cajan. The integrated phylogenetic, evolutionary and expression analysis of the TCS genes was carried out, which revealed that histidine kinases (HKs) were highly conserved, whereas there was diversification leading to neofunctionalization at the level of response regulators (RRs) especially the TypeB RRs. Further, the functional role of the CaHKs in nodulation was established by complementation of the sln1Δ mutant of yeast and cre1 mutants of (Medicago) which led to restoration of the nodule-deficient phenotype. Additionally, the highest expressing TypeB RR of chickpea, CaRR13, was functionally characterized. Its localization in the nucleus and its Y1H assay-based interaction with the promoter of the early nodulation gene CaNSP2 indicated its role as a transcription factor regulating early nodulation. Overexpression, RNAi lines and complementation of cre1 mutants with CaRR13 revealed its critical involvement as an important signalling molecule regulating early events of nodule organogenesis in chickpea.


Assuntos
Cicer , Cicer/genética , Cicer/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Simbiose/genética
10.
Plant Cell Environ ; 44(5): 1279-1291, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33347631

RESUMO

Symbiotic nitrogen fixation in legume nodules is important in soils with low nitrogen availability. The initiation and sustainability of symbiosis require cellular reprogramming that involves the miRNA-mediated inhibition or activation of specific nodulation genes. The high-throughput sequencing of small RNA libraries has identified miRNAs and their targets, which are the major players in the post-transcriptional gene regulation (PTGS) of the different stages of legume-rhizobia symbiosis ranging from bacterial colonization and organogenesis to symbiotic nitrogen fixation. Here, we present an overview of information obtained from the miRNA libraries from nodulating tissues that have been sequenced to date. The functional analysis of miRNAs has revealed roles in phytohormone homeostasis and spatio-temporal regulation, as well as the mobility of miRNAs and their functions in shoot to root signalling that affects diverse functions, including bacterial entry, meristem division and differentiation, nitrogen fixation and senescence. Furthermore, small RNA fragments of rhizobial origin repress complementary plant mRNAs. We also consider the roles of miRNAs in determinate or indeterminate nodules. Taken together, this overview confirms that miRNAs are master regulators of the legume-rhizobia symbiosis.


Assuntos
Fabaceae/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Simbiose/genética , MicroRNAs/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Nodulação/genética
11.
Nanotechnology ; 32(35)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038895

RESUMO

High energy and high flux protons are used in proton therapy and the impact of proton radiation is a major reliability concern for electronics and solar cells in low earth orbit as well as in the trapped belts. Carbon nanotubes (CNTs), due to their unique characteristics, have been considered for the construction of proton and other radiation sensors. Here, a single wall CNT based proton sensor was fabricated on FR4 substrate and its response to 150 MeV proton irradiation was studied. The change in the resistance of the nanotubes upon irradiation is exploited as the sensing mechanism and the sensor shows good sensitivity to proton radiation. Proton radiation induces dissociation of ambient oxygen, followed by the adsorption of oxygen species on the nanotube surface, which influences its electrical characteristics. Since the nanotube film is thin and the 150 MeV protons are expected to penetrate into and interact with the substrate, control experiments were conducted to study the impact on FR4 substrate without the nanotubes. The dielectric loss tangent or dissipation factor of FR4 increases after irradiation due to an increase in the cross-linking of the resin arising from the degradation of the polymer network.

12.
Environ Geochem Health ; 43(4): 1415-1426, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32737634

RESUMO

The present study aimed to elucidate the remediation potential of visibly dominant, naturally growing plants obtained from an early colonized fly ash dump near a coal-based thermal power station. The vegetation comprised of grasses like Saccharum spontaneum L., Cynodon dactylon (L.) Pers., herbs such as Tephrosia purpurea (L.) Pers., Sida rhombifolia L., Dysphania ambrosioides (L.) Mosyakin & Clemants, Chromolaena odorata (L.) King & H.E. Robins along with tree saplings Butea monosperma (Lam.) Taub. The growth of the vegetation improved the N and P content of the ash. Average metal concentrations (mg kg-1) in the ash samples and plants were in order Mn (345.1) > Zn (63.7) > Ni (29.3) > Cu (16.8) > Cr (9.9) > Pb (1.7) > Cd (0.41) and Cr (58.58) > Zn (52.74) > Mn (39.09) > Cu (10.71) > Ni (7.45) > Pb (5.52) > Cd (0.14), respectively. The plants showed fly ash dump phytostabilization potential and accumulated Cr (80.19-178.11 mg kg-1) above maximum allowable concentrations for plant tissues. Positive correlations were also obtained for metal concentration in plant roots versus fly ash. Saccharum spontaneum showed highest biomass and is the most efficient plant which can be used for the restoration of ash dumps.


Assuntos
Biodegradação Ambiental , Cinza de Carvão , Poluentes Ambientais/análise , Metais/análise , Plantas/química , Cromo/análise , Cromo/farmacocinética , Carvão Mineral , Cinza de Carvão/análise , Cinza de Carvão/química , Poluentes Ambientais/farmacocinética , Índia , Metais/farmacocinética , Nitrogênio/análise , Desenvolvimento Vegetal , Raízes de Plantas/química , Plantas/metabolismo , Especificidade da Espécie
13.
Environ Geochem Health ; 42(8): 2399-2411, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31587160

RESUMO

Soil contamination by heavy metals and metalloids is a serious problem which needs to be addressed. There are several methods for removal of contaminants, but they are costly, while the method of phytoremediation is eco-friendly and cost-effective. Pteridophytes have been found to remediate heavy metal-contaminated soil. Pteridophytes are non-flowering plant that reproduces by spores. Pteris vittata has been reported as the first fern plant to hyperaccumulate arsenic. The Pteris species belongs to the order Pteridales. Other ferns that are known phytoremediators are, for example, Nephrolepis cordifolia and Hypolepis muelleri (identified as phytostabilisers of Cu, Pb, Zn and Ni); similarly Pteris umbrosa and Pteris cretica accumulate arsenic in leaves. So, pteridophytes have a number of species that accumulate contaminants. Many of them have been identified, while various other are being explored. The present review article describes the phytoremediation potential of pteridophytes plants and suggests as a potential asset for phytoremediation programs.


Assuntos
Recuperação e Remediação Ambiental/métodos , Gleiquênias/fisiologia , Poluentes do Solo/farmacocinética , Arsênio/farmacocinética , Biodegradação Ambiental , Transporte Biológico/efeitos dos fármacos , Gleiquênias/efeitos dos fármacos , Herbivoria , Metais Pesados/farmacocinética , Pteris/efeitos dos fármacos , Pteris/fisiologia , Poluentes do Solo/análise
14.
Environ Geochem Health ; 42(12): 4101-4111, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32060865

RESUMO

The presence of heavy metal in soil and water resources has serious impact on human health. The study was designed to examine the phytoremediation ability of plant species that are growing naturally on the Zn-contaminated site. For the study, six plant species and their rhizospheric soil as well as non-rhizospheric soil samples were collected from different parts of the industrial sites for chemical and biological characterization. Visual observations and highest importance value index (IVI) through biodiversity study revealed potential plants as effective ecological tools for the restoration of the contaminated site. Among the plants, almost all were the most efficient in accumulating Fe, Mn, Cu and Zn in its shoots and roots, while Cynodon dactylon, Chloris virgata and Desmostachya bipinnata were found to be stabilizing Cr, Pb and Cd (bioconcentration factor in root = 7.95, 6.28 and 1.98 as well as translocation factor = 0.48, 0.46 and 0.78), respectively. Thus, the results of this study showed that the naturally growing plant species have phytoremediation potential to remediate the electroplating wastewater-contaminated site. These plant species are successful phytoremediators with their efficient metal stabilizing and well-evolved tolerance to heavy metal toxicity.


Assuntos
Galvanoplastia , Metais Pesados/metabolismo , Plantas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Biodiversidade , Metais Pesados/análise , Raízes de Plantas/classificação , Raízes de Plantas/metabolismo , Plantas/classificação , Rizosfera , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Poluentes Químicos da Água/análise
15.
Semin Cell Dev Biol ; 63: 154-166, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27867042

RESUMO

Neurodegeneration is a salient feature of chronic refractory brain disorders like Alzheimer's, Parkinson's, Huntington's, amyotropic lateral sclerosis and acute conditions like cerebral ischemia/reperfusion etc. The pathological protein aggregates, mitochondrial mutations or ischemic insults typifying these disease conditions collude with and intensify existing oxidative stress and attendant mitochondrial dysfunction. Interlocking these mechanisms is poly(ADP-ribose) polymerase (PARP-1) hyperactivation that invokes a distinct form of neuronal cell death viz., 'parthanatos'. PARP-1, a typical 'moonlighting protein' by virtue of its ability to poly(ADP-ribosyl)ate a plethora of cellular proteins exerts diverse functions that impinge significantly on cellular processes. In addition, its interactions with various nuclear proteins like transcription factors and chromatin modifiers elicit varied transcriptional outcomes that wield pathological cellular responses. Further, emerging leitmotifs like mitochondrial and nucleolar PARPs and the novel aspects of gene expression regulation by PARP-1 and poly(ADP-ribosyl)ation can provide a holistic view of PARP-1's influence on cell vitality. In this review, we discuss the pathological underpinnings of PARP-1, with a special emphasis on mitochondrial dysfunction and cell death subroutines, in the realm of neurodegeneration. This would provide a deeper insight into the functions of PARP-1 in neurodegenerative conditions that would enable the development of more effective therapeutic strategies.


Assuntos
Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Neurônios/enzimologia , Neurônios/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Nucléolo Celular/enzimologia , Humanos , Mitocôndrias/metabolismo , Mapas de Interação de Proteínas
16.
Funct Integr Genomics ; 19(6): 867-888, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31127449

RESUMO

High temperature and salinity stress are major factors limiting the growth and productivity of rice crop on a global scale. It is therefore an essential prerequisite to understand the molecular genetic regulation of plant responses to dual stresses. MicroRNAs (miRs) are recognized as key controllers of gene expression which act mainly at the post-transcriptional level to regulate various aspects of plant development. The present study attempts to investigate the miR circuits that are modulated in response to high temperature and salinity stress in rice. To gain insights into the pathway, preliminary miR profiles were generated using the next-generation sequencing (NGS) datasets. The identified molecules were filtered on the basis of fold differential regulation under high temperature, and time kinetics of their expression under the two individual stresses was followed to capture the regulatory windows. The analysis revealed the involvement of common miR regulatory nodes in response to two different abiotic stresses, thereby broadening our perspective about the stress-mediated regulatory mechanisms operative in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Resposta ao Choque Térmico , MicroRNAs/genética , Oryza/genética , Estresse Salino , MicroRNAs/metabolismo , Oryza/metabolismo
17.
Mol Cell Neurosci ; 82: 176-194, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28552342

RESUMO

The advent of epigenetics brought in a tectonic shift in the understanding of molecular basis of complex diseases like ischemic stroke (IS). Substantial scientific inquiry into the epigenetic basis of neurodegenerative diseases has bolstered the idea that altered carbon flux into central carbon metabolism and disturbed redox states govern the attendant transcriptional profiles through stochastic epigenetic changes. In view of an increasing understanding of the link between mitochondrial energy metabolism, oxidative stress and epigenetics in IS, the hitherto underappreciated 'neuroenergetics' is gaining sustained attention. Defined metabolic transitions during IS are necessarily a function of transiently altered abundance of critical metabolic substrates of Krebs cycle and other pathways viz., acetyl-CoA, citrate, 2-oxo-glutarate, succinate, fumarate, S-adenosyl methionine, ß-hydroxybutyrate and cofactors (NAD+, FAD, ATP, vitamin C) in neuronal mitochondria. These changes impinge on the cellular transcriptome by regulating the activity of several chromatin modifying enzymes that bring about epigenomic transition through alteration in DNA methylation and histone post translational modifications. This triggers downstream signaling cascades that circumstantially evoke adaptive and cell death responses during IS. Indeed, they also prevail on the functionality of neuronal network, brain plasticity and neurogenesis during post stroke recovery. Understanding the epigenetic underpinnings of IS that explicitly alter the brain transcriptomes could open new vistas of therapeutic opportunity. In the current review, we present an update on various aspects linking mitochondrial energy metabolism, oxidative stress and epigenetic modifications in the pathological setting of IS.


Assuntos
Isquemia Encefálica/metabolismo , Epigênese Genética/fisiologia , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/metabolismo , Humanos
18.
Int J Phytoremediation ; 20(12): 1250-1256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-27936885

RESUMO

A field study was carried out on fly ash (FA) dumps of Panki Thermal Power Station to assess the phytoaccumulation of elements in various plant parts of edible fruit tree Ziziphus mauritiana. Of the twelve analyzed elements, the highest concentration was found for Fe followed by Mn > Se > Zn > Mo > Cu > Cr > Pb > Cd >Ni > As > Co in rhizospheric substrate of Z. mauritiana grown on FA dumps. Metal accumulation, bioconcentration factor, and translocation factor for each metal were calculated in various parts of the edible fruit tree. Significant variations of metal accumulations were observed among various plant parts. Accumulation of toxic elements was higher in roots, and it gradually declined toward the aerial parts of the plant corresponding to its distance from the ground. The concentration of some elements in fruit tree was found to be above prescribed limits in edible parts. Therefore, the present study suggested that additional care should be undertaken, if edible fruit trees are considered for phytoremediation or afforestation programs of FA dumps.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Ziziphus , Biodegradação Ambiental , Cinza de Carvão , Frutas/química
19.
J Microencapsul ; 35(2): 121-136, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29448884

RESUMO

Cerebral malaria (CM) is a fatal neurological complication of Plasmodium falciparum infection that affects children (below five years old) in sub-Saharan Africa and adults in South-East Asia each year having the fatality rate of 10-25%. The survivors of CM also have high risk of long term neurological or cognitive deficits. The objective of the present investigation was to develop optimised nanostructured lipid carriers (NLCs) of artemether (ARM) for enhanced anti-malarial efficacy of ARM. NLCs of ARM were prepared by a combination of high speed homogenisation (HSH) and probe sonication techniques. Preliminary solubility studies for ARM showed highest solubility in trimyristin (solid lipid), capmul MCM NF (liquid lipid) and polysorbate 80 (surfactant). Trimyristin and capmul showed superior miscibility at a ratio of 70:30.The optimised NLC formulation has the particle size (PS) of: 48.59 ± 3.67 nm, zeta potential (ZP) of: -32 ± 1.63 mV and entrapment efficiency (EE) of: 91 ± 3.62%. In vitro cell line (human embryonic kidney fibroblast cell line (HEK 293 T)) cytotoxicity studies showed that prepared formulation was non-toxic. The results of in vivo studies in CM induced mice prevented the recrudescence of parasite after administration of NLCs of ARM. Additionally, NLCs of ARM showed better parasite clearance, higher survival (60%) in comparison to ARM solution (40%). Also it was observed that lesser entrapment of Evans blue stain (prepared in PBS as solution) in the NLCs of ARM treated brains of C57BL/6 mice than ARM solution treated mice. Hence NLCs of ARM may be a better alternative for improving therapeutic efficacy than ARM solution.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Malária Cerebral/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Animais , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Artemeter , Artemisininas/farmacocinética , Artemisininas/uso terapêutico , Encéfalo/parasitologia , Diglicerídeos/química , Células HEK293 , Humanos , Malária Cerebral/parasitologia , Masculino , Camundongos Endogâmicos C57BL , Monoglicerídeos/química , Nanoestruturas/química , Tamanho da Partícula , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA