Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Allergy ; 79(2): 294-301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37654007

RESUMO

While the number and types of indoor air pollutants is rising, much is suspected but little is known about the impact of their potentially synergistic interactions, upon human health. Gases, particulate matter, organic compounds but also allergens and viruses, fall within the 'pollutant' definition. Distinct populations, such as children and allergy and asthma sufferers are highly susceptible, while a low socioeconomic background is a further susceptibility factor; however, no specific guidance is available. We spend most of our time indoors; for children, the school environment is of paramount importance and potentially amenable to intervention. The interactions between some pollutant classes have been studied. However, a lot is missing with respect to understanding interactions between specific pollutants of different classes in terms of concentrations, timing and sequence, to improve targeting and upgrade standards. SynAir-G is a European Commission-funded project aiming to reveal and quantify synergistic interactions between different pollutants affecting health, from mechanisms to real life, focusing on the school setting. It will develop a comprehensive and responsive multipollutant monitoring system, advance environmentally friendly interventions, and disseminate the generated knowledge to relevant stakeholders in accessible and actionable formats. The aim of this article it to put forward the SynAir-G hypothesis, and describe its background and objectives.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Asma , Poluentes Ambientais , Criança , Humanos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado , Asma/epidemiologia , Asma/etiologia , Monitoramento Ambiental
2.
Soft Matter ; 20(24): 4783-4794, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38847330

RESUMO

Organic compounds constitute a substantial part of atmospheric particulate matter not only in terms of mass concentration but also in terms of distinct functional groups. The glass transition temperature provides an indirect way to investigate the phase state of the organic compounds, playing a crucial role in understanding their behavior and influence on aerosol processes. Molecular dynamics (MD) simulations were implemented here to predict the glass transition temperature (Tg) of atmospherically relevant organic compounds as well as the influence of their functional groups and length of their carbon chain. The cooling step used in the simulations was chosen to be neither too low (to supress crystallization) nor too high (to avoid Tg overprediction). According to the MD simulations, the predicted Tg is sensitive to the functional groups as follows: carboxylic acid (-COOH) > hydroxyl (-OH) and (-COOH) > carbonyls (-CO). Increasing the number of carbon atoms leads to higher Tg for the linearly structured compounds. Linear compounds with lower molecular weight were found to exhibit a lower Tg. No clear correlation between O : C and Tg was observed. The architecture of the carbon chain (linear, or branched, or ring) was also found to impact the glass transition temperature. Compounds containing a non-aromatic carbon ring are characterized by a higher Tg compared to linear and branched ones with the same number of carbon atoms.

3.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972419

RESUMO

Agriculture is a major contributor to air pollution, the largest environmental risk factor for mortality in the United States and worldwide. It is largely unknown, however, how individual foods or entire diets affect human health via poor air quality. We show how food production negatively impacts human health by increasing atmospheric fine particulate matter (PM2.5), and we identify ways to reduce these negative impacts of agriculture. We quantify the air quality-related health damages attributable to 95 agricultural commodities and 67 final food products, which encompass >99% of agricultural production in the United States. Agricultural production in the United States results in 17,900 annual air quality-related deaths, 15,900 of which are from food production. Of those, 80% are attributable to animal-based foods, both directly from animal production and indirectly from growing animal feed. On-farm interventions can reduce PM2.5-related mortality by 50%, including improved livestock waste management and fertilizer application practices that reduce emissions of ammonia, a secondary PM2.5 precursor, and improved crop and animal production practices that reduce primary PM2.5 emissions from tillage, field burning, livestock dust, and machinery. Dietary shifts toward more plant-based foods that maintain protein intake and other nutritional needs could reduce agricultural air quality-related mortality by 68 to 83%. In sum, improved livestock and fertilization practices, and dietary shifts could greatly decrease the health impacts of agriculture caused by its contribution to reduced air quality.


Assuntos
Agricultura/normas , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Alimentos/normas , Nível de Saúde , Material Particulado/análise , Agricultura/métodos , Agricultura/estatística & dados numéricos , Amônia/análise , Animais , Produtos Agrícolas/metabolismo , Doença/etiologia , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Fertilizantes , Geografia , Humanos , Gado/metabolismo , Mortalidade/tendências , Material Particulado/efeitos adversos , Estados Unidos
4.
Proc Natl Acad Sci U S A ; 117(52): 33028-33033, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318218

RESUMO

Oxidized organic aerosol (OOA) is a major component of ambient particulate matter, substantially impacting climate, human health, and ecosystems. OOA is readily produced in the presence of sunlight, and requires days of photooxidation to reach the levels observed in the atmosphere. High concentrations of OOA are thus expected in the summer; however, our current mechanistic understanding fails to explain elevated OOA during wintertime periods of low photochemical activity that coincide with periods of intense biomass burning. As a result, atmospheric models underpredict OOA concentrations by a factor of 3 to 5. Here we show that fresh emissions from biomass burning exposed to NO2 and O3 (precursors to the NO3 radical) rapidly form OOA in the laboratory over a few hours and without any sunlight. The extent of oxidation is sensitive to relative humidity. The resulting OOA chemical composition is consistent with the observed OOA in field studies in major urban areas. Additionally, this dark chemical processing leads to significant enhancements in secondary nitrate aerosol, of which 50 to 60% is estimated to be organic. Simulations that include this understanding of dark chemical processing show that over 70% of organic aerosol from biomass burning is substantially influenced by dark oxidation. This rapid and extensive dark oxidation elevates the importance of nocturnal chemistry and biomass burning as a global source of OOA.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/estatística & dados numéricos , Biomassa , Material Particulado/química , Aerossóis/química , Cidades , Modelos Teóricos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/química , Oxirredução , Oxigênio/química
5.
Environ Sci Technol ; 56(7): 3952-3959, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35324189

RESUMO

A method for the measurement of the water solubility distribution of atmospheric organic aerosols is presented. This method is based on the extraction of organic aerosols collected on filters, using different amounts of water and measurement of the corresponding water-soluble organic carbon concentration. The solubility distribution is then estimated using the solubility basis set. The method was applied on both ambient and source-specific aerosols. Approximately 60% of the atmospheric urban organic aerosol analyzed had water solubility higher than 0.6 g L-1. Around 10% of the fresh cooking organic aerosol had water solubility higher than 10 g L-1, while 80% of the total fresh cooking organic aerosol had solubility lower than 0.1 g L-1. The ambient measurements suggested that the solubility distributions are roughly consistent with the positive matrix factorization analysis results determined during the analysis of the high-resolution time-of-flight aerosol mass spectrometry data. Most of the oxidized organic aerosol appears to have water solubility above 0.6 g L-1, while the hydrocarbon-like organic aerosol and cooking organic aerosol have water solubility less than 0.002 and 0.1 g L-1, respectively. The biomass burning organic aerosol seems to have mostly intermediate solubility in water, between 0.04 and 0.6 g L-1. The proposed approach can quantify the solubility distribution in the 0.002-15 g L-1 range. Future extension of the method to higher solubility ranges would be useful for capturing the complete solubility range for atmospheric cloud condensation studies (0.1-100 g L-1).


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Solubilidade , Água/química
6.
Environ Sci Technol ; 56(11): 7214-7223, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34689559

RESUMO

The purpose of this study was to estimate cardiopulmonary mortality associations for long-term exposure to PM2.5 species and sources (i.e., components) within the U.S. National Health Interview Survey cohort. Exposures were estimated through a chemical transport model for six species (i.e., elemental carbon (EC), primary organic aerosols (POA), secondary organic aerosols (SOA), sulfate (SO4), ammonium (NH4), nitrate (NO3)) and five sources of PM2.5 (i.e., vehicles, electricity-generating units (EGU), non-EGU industrial sources, biogenic sources (bio), "other" sources). In single-pollutant models, we found positive, significant (p < 0.05) mortality associations for all components, except POA. After adjusting for remaining PM2.5 (total PM2.5 minus component), we found significant mortality associations for EC (hazard ratio (HR) = 1.36; 95% CI [1.12, 1.64]), SOA (HR = 1.11; 95% CI [1.05, 1.17]), and vehicle sources (HR = 1.06; 95% CI [1.03, 1.10]). HRs for EC, SOA, and vehicle sources were significantly larger in comparison to those for remaining PM2.5 (per unit µg/m3). Our findings suggest that cardiopulmonary mortality associations vary by species and source, with evidence that EC, SOA, and vehicle sources are important contributors to the PM2.5 mortality relationship. With further validation, these findings could facilitate targeted pollution regulations that more efficiently reduce air pollution mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos de Coortes , Poeira , Monitoramento Ambiental , Humanos , Material Particulado/análise
7.
Environ Sci Technol ; 55(11): 7307-7315, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000801

RESUMO

Acidity profoundly affects almost every aspect that shapes the composition of ambient particles and their environmental impact. Thermodynamic analysis of gas-particle composition datasets offers robust estimates of acidity, but they are not available for long periods of time. Fog composition datasets, however, are available for many decades; we develop a thermodynamic analysis to estimate the ammonia in equilibrium with fog water and to infer the pre-fog aerosol pH starting from fog chemical composition and pH. The acidity values from the new method agree with the results of thermodynamic analysis of the available gas-particle composition data. Applying the new method to historical (25 years) fog water composition at the rural station of San Pietro Capofiume (SPC) in the Po Valley (Italy) suggests that the aerosol has been mildly acidic, with its pH decreasing by 0.5-1.5 pH units over the last decades. The observed pH of the fog water also increased 1 unit over the same period. Analysis of the simulated aerosol pH reveals that the aerosol acidity trend is driven by a decrease in aerosol precursor concentrations, and changes in temperature and relative humidity. Currently, NOx controls would be most effective for PM2.5 reduction in the Po valley both during summer and winter. In the future, however, seasonal transitions to the NH3-sensitive region may occur, meaning that the NH3 reduction policy may become increasingly necessary.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Itália , Material Particulado/análise , Estações do Ano , Água
8.
Environ Sci Technol ; 54(3): 1336-1343, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31869213

RESUMO

A dual smog chamber system was used to quantify the formation rates of secondary organic and inorganic aerosol in an urban environment (Pittsburgh, US). Ambient air was introduced in both chambers, and HONO photolysis was used to produce hydroxyl radicals (OH) in the perturbed chamber. The second chamber was used as a reference. The production rate of secondary organic aerosol (SOA) under typical noon-time OH concentrations ranged from 0.2 to 0.8 µg m-3 h-1. The production rate of sulfate was approximately five times less than that of the SOA. Nucleation and growth of new particles were observed in the perturbation chamber. The produced SOA had a similar composition with the preexisting oxygenated ambient OA. The reacted amounts of the measured VOCs were able to explain 5-50% of the formed SOA in the perturbed chamber. Intermediate volatility organic compounds could be responsible for the rest. The oxygen to carbon ratio (O:C) in the perturbed chamber remained approximately the same during SOA production, while an increase was observed in the control chamber. A possible explanation could be the loss of less oxidized species to the chamber walls. After 2 h, the OA increased by 70% on average and the sulfate by 40%.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis , Atmosfera , Smog
9.
Environ Sci Technol ; 52(3): 1150-1155, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29286656

RESUMO

The properties and the chemical fate of later generation products of the oxidation of biogenic organic compounds are mostly unknown. The properties of fresh MBTCA aerosol, a later generation product of the oxidation of monoterpenes in the atmosphere, were determined combining an aerosol mass spectrometer (AMS), a thermodenuder, and a scanning mobility particle sizer. Based on its AMS spectrum m/z 141.055 (C7H9O3+) could be used as an MBTCA signature. The MBTCA particle density was 1.43 ± 0.04 g cm-3, its saturation concentration was (1.8 ± 1.3) × 10-3 µg m-3 at 298 K, and its vaporization enthalpy was 150 ± 15 kJ mol-1. After OH radical exposure (∼1.2 days) and UV illumination the average aerosol O:C ratio decreased from 0.72 to 0.58-0.64 suggesting net fragmentation. Our findings suggest that the reactions of MBTCA with OH lead to CO2 loss with or without an oxygen addition.


Assuntos
Atmosfera , Compostos Orgânicos , Aerossóis , Monoterpenos , Volatilização
10.
Environ Sci Technol ; 52(2): 692-700, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29185762

RESUMO

Although they are currently unregulated, atmospheric ultrafine particles (<100 nm) pose health risks because of, e.g., their capability to penetrate deep into the respiratory system. Ultrafine particles, often minor contributors to atmospheric particulate mass, typically dominate aerosol particle number concentrations. We simulated the response of particle number concentrations over Europe to recent estimates of future emission reductions of aerosol particles and their precursors. We used the chemical transport model PMCAMx-UF, with novel updates including state-of-the-art descriptions of ammonia and dimethylamine new particle formation (NPF) pathways and the condensation of organic compounds onto particles. These processes had notable impacts on atmospheric particle number concentrations. All three emission scenarios (current legislation, optimized emissions, and maximum technically feasible reductions) resulted in substantial (10-50%) decreases in median particle number concentrations over Europe. Consistent reductions were predicted in Central Europe, while Northern Europe exhibited smaller reductions or even increased concentrations. Motivated by the improved NPF descriptions for ammonia and methylamines, we placed special focus on the potential to improve air quality by reducing agricultural emissions, which are a major source of these species. Agricultural emission controls showed promise in reducing ultrafine particle number concentrations, although the change is nonlinear with particle size.


Assuntos
Poluentes Atmosféricos , Aerossóis , Aminas , Amônia , Monitoramento Ambiental , Europa (Continente) , Tamanho da Partícula , Material Particulado
11.
Phys Chem Chem Phys ; 19(25): 16681-16692, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28621372

RESUMO

Molecular dynamics (MD) simulations were employed to investigate the local structure and local concentration in atmospheric nanoparticles consisting of an organic compound (cis-pinonic acid or n-C30H62), sulfate and ammonium ions, and water. Simulations in the isothermal-isobaric (NPT) statistical ensemble under atmospheric conditions with a prespecified number of molecules of the abovementioned compounds led to the formation of a nanoparticle. Calculations of the density profiles of all the chemical species in the nanoparticle, the corresponding radial pair distribution functions, and their mobility inside the nanoparticle revealed strong interactions developing between sulfate and ammonium ions. However, sulfate and ammonium ions prefer to populate the central part of the nanoparticle under the simulated conditions, whereas organic molecules like to reside at its outer surface. Sulfate and ammonium ions were practically immobile; in contrast, the organic molecules exhibited appreciable mobility at the outer surface of the nanoparticle. When the organic compound was a normal alkane (e.g. n-C30H62), a well-organized (crystalline-like) phase was rapidly formed at the free surface of the nanoparticle and remained separate from the rest of the species.

12.
Faraday Discuss ; 189: 277-90, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27310460

RESUMO

Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment.


Assuntos
Poluição do Ar/análise , Material Particulado/análise , Aerossóis/análise , Aerossóis/química , Agricultura , Biomassa , Cidades , Culinária , Espectrometria de Massas , Estações do Ano
13.
Environ Sci Technol ; 48(23): 13769-75, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25356879

RESUMO

The effect of ammonia on the partitioning of two dicarboxylic acids, oxalic (C2) and adipic (C6) is determined. Measurements by a tandem differential mobility analysis system and a thermodenuder (TD-TDMA) system are used to estimate the saturation vapor pressure and enthalpy of vaporization of ammonium oxalate and adipate. Ammonia dramatically lowered the vapor pressure of oxalic acid, by several orders of magnitude, with an estimated vapor pressure of 1.7 ± 0.8 × 10(­6) Pa at 298 K. The vapor pressure of ammonium adipate was 2.5 ± 0.8 × 10(­5) Pa at 298 K, similar to that of adipic acid. These results suggest that the dominance of oxalate in diacid concentrations measured in ambient aerosol could be attributed to the salt formation with ammonia.


Assuntos
Adipatos/química , Aerossóis/química , Poluentes Atmosféricos/química , Ácido Oxálico/química , Termodinâmica , Pressão de Vapor , Volatilização
14.
Sci Total Environ ; 913: 169683, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160832

RESUMO

Exposure to wildfire smoke and dust can severely affect air quality and health. Although particulate matter (PM) levels and exposure are well-established metrics linking to health outcomes, they do not consider differences in particle toxicity or deposition location in the respiratory tract (RT). Usage of the oxidative potential (OP) exposure may further shape our understanding on how different pollution events impact health. Towards this goal, we estimate the aerosol deposition rates, OP and resulting OP deposition rates in the RT for a typical adult Caucasian male residing in Athens, Greece. We focus on a period when African dust (1-3 of August 2021) and severe wildfires at the northern part of the Attika peninsula and the Evia island, Greece (4-18 of August 2021) affected air quality in Athens. During these periods, the aerosol levels increased twofold leading to exceedances of the World Health Organization (WHO) [15(5) µg m-3] PM10 (PM2.5) air quality standard by almost 100 %. We show that the OP exposure is 1.5-times larger during the wildfire smoke events than during the dust intrusion, even if the latter was present in higher mass loads - because wildfire smoke has a higher specific OP than dust. This result carries two important implications: OP exposure should be synergistically used with other metrics - such as PM levels - to efficiently link aerosol exposure with the resulting health effects, and, certain sources of air pollution (in our case, exposure to biomass burning smoke) may need to be preferentially controlled, whenever possible, owing to their disproportionate contribution to OP exposure and ability to penetrate deeper into the human RT.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios Florestais , Adulto , Humanos , Masculino , Poeira , Poluentes Atmosféricos/análise , Material Particulado/análise , Fumaça/efeitos adversos , Sistema Respiratório/química , Estresse Oxidativo
15.
Environ Sci Technol ; 47(17): 9791-8, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23883352

RESUMO

The measurement of Water-Soluble Organic Carbon (WSOC) in atmospheric aerosol is usually carried out by sample collection on filters, extraction in ultrapure water, filtration, and measurement of the total organic carbon. This paper investigates the role of different conditions of sampling and extraction as well as the range of solubilities of the organic compounds that contribute to the WSOC. The sampling and extraction of WSOC can be described by a single parameter, P, expressing the ratio of water used per volume of air sampled on the analyzed filter. Two cases are examined in order to bound the range of interactions of the various organic aerosol components with each other. In the first we assume that the organic species form an ideal solution in the particle and in the second that the extraction of a single compound is independent of the presence of the other organics. The ideal organic solution model predicts that species with water solubility as low as 10(-4) g L(-1) contribute to the measured WSOC. In the other end, the independent compounds model predicts that low-solubility (as low as 10(-7) g L(-1)) compounds are part of the WSOC. Studies of the WSOC composition are consistent with the predictions of the ideal organic solution model. A value of P = 0.1 cm(3) m(-3) is proposed for the extraction of WSOC for typical organic aerosol concentrations (1-10 µg m(-3)). WSOC measurements under high concentration conditions often used during source sampling will tend to give low WSOC values unless higher P values are used.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Filtração/métodos , Compostos Orgânicos/análise , Monitoramento Ambiental/instrumentação , Filtração/instrumentação , Modelos Teóricos , Solubilidade
16.
ACS Omega ; 8(37): 33481-33492, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744838

RESUMO

Computer-generated atomistic microstructures of atmospheric nanoparticles are geometrically analyzed using Delaunay tessellation followed by Monte Carlo integration to compute their free and accessible volume. The nanoparticles studied consist of cis-pinonic acid (a biogenic organic aerosol component), inorganic ions (sulfate and ammonium), and water. Results are presented for the free or unoccupied volume in different domains of the nanoparticles and its dependence on relative humidity and organic content. We also compute the accessible volume to small penetrants such as water molecules. Most of the free volume or volume accessible to a penetrant as large as a water molecule is located in the domains occupied by organics. In contrast, regions dominated by inorganics do not have any cavities with sizes larger than 1 Å. Solid inorganic domains inside the particle are practically impermeable to any small molecule, thereby offering practically infinite resistance to diffusion. A guest molecule can find diffusive channels to wander around within the nanoparticle only through the aqueous and organic-rich domains. The largest pores are observed in nanoparticles with high levels of organic mass and low relative humidity. At high relative humidity, the presence of more water molecules reduces the empty space in the inner domains of the nanoparticle, since areas rich in organic molecules (which are the only ones where appreciable pores are found) are pushed to the outer area of the particle. This, however, should not be expected to affect the diffusive process as transport through the aqueous phase inside the particle will be, by default, fast due to its fluid-like nature.

17.
Environ Sci Atmos ; 3(9): 1319-1334, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-38013728

RESUMO

Pellet combustion in residential heating stoves has increased globally during the last decade. Despite their high combustion efficiency, the widespread use of pellet stoves is expected to adversely impact air quality. The atmospheric aging of pellet emissions has received even less attention, focusing mainly on daytime conditions, while the degree to which pellet emissions undergo night-time aging as well as the role of relative humidity remain poorly understood. In this study, environmental simulation chamber experiments were performed to characterize the fresh and aged organic aerosol (OA) emitted by a pellet stove. The fresh pellet stove PM1 (particulate matter with an aerodynamic diameter less than 1 µm) emissions consisted mainly of OA (93 ± 4%, mean ± standard deviation) and black carbon (5 ± 3%). The primary OA (POA) oxygen-to-carbon ratio (O : C) was 0.58 ± 0.04, higher than that of fresh logwood emissions. The fresh OA at a concentration of 70 µg m-3 (after dilution and equilibration in the chamber) consisted of semi-volatile (68%), low and extremely low volatility (16%) and intermediate-volatility (16%) compounds. The oxidation of pellet emissions under dark conditions was investigated by injecting nitrogen dioxide (NO2) and ozone (O3) into the chamber, at different (10-80%) relative humidity (RH) levels. In all dark aging experiments secondary organic aerosol (SOA) formation was observed, increasing the OA levels after a few hours of exposure to NO3 radicals. The change in the aerosol composition and the extent of oxidation depended on RH. For low RH, the SOA mass formed was up to 30% of the initial OA, accompanied by a moderate change in both O : C levels (7-8% increase) and the OA spectrum. Aging under higher RH conditions (60-80%) led to a more oxygenated aerosol (increase in O : C of 11-18%), but only a minor (1-10%) increase in OA mass. The increase in O : C at high RH indicates the importance of heterogeneous aqueous reactions in this system, that oxidize the original OA with a relatively small net change in the OA mass. These results show that the OA in pellet emissions can chemically evolve under low photochemical activity (e.g. the wintertime period) with important enhancement in SOA mass under certain conditions.

18.
Environ Sci Technol ; 46(20): 11179-86, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22970932

RESUMO

We use a two-dimensional volatility basis set (2D-VBS) box model to simulate secondary organic aerosol (SOA) mass yields of linear oxygenated molecules: n-tridecanal, 2- and 7-tridecanone, 2- and 7-tridecanol, and n-pentadecane. A hybrid model with explicit, a priori treatment of the first-generation products for each precursor molecule, followed by a generic 2D-VBS mechanism for later-generation chemistry, results in excellent model-measurement agreement. This strongly confirms that the 2D-VBS mechanism is a predictive tool for SOA modeling but also suggests that certain important first-generation products for major primary SOA precursors should be treated explicitly for optimal SOA predictions.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Monitoramento Ambiental/métodos , Smog , Alcanos/química , Monitoramento Ambiental/instrumentação , Cinética , Modelos Químicos , Volatilização
19.
PLoS One ; 17(5): e0268714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613109

RESUMO

Each year, millions of premature deaths worldwide are caused by exposure to outdoor air pollution, especially fine particulate matter (PM2.5). Designing policies to reduce these deaths relies on air quality modeling for estimating changes in PM2.5 concentrations from many scenarios at high spatial resolution. However, air quality modeling typically has substantial requirements for computation and expertise, which limits policy design, especially in countries where most PM2.5-related deaths occur. Lower requirement reduced-complexity models exist but are generally unavailable worldwide. Here, we adapt InMAP, a reduced-complexity model originally developed for the United States, to simulate annual-average primary and secondary PM2.5 concentrations across a global-through-urban spatial domain: "Global InMAP". Global InMAP uses a variable resolution grid, with horizontal grid cell widths ranging from 500 km in remote locations to 4km in urban locations. We evaluate Global InMAP performance against both measurements and a state-of-the-science chemical transport model, GEOS-Chem. Against measurements, InMAP predicts total PM2.5 concentrations with a normalized mean error of 62%, compared to 41% for GEOS-Chem. For the emission scenarios considered, Global InMAP reproduced GEOS-Chem pollutant concentrations with a normalized mean bias of 59%-121%, which is sufficient for initial policy assessment and scoping. Global InMAP can be run on a desktop computer; simulations here took 2.6-8.4 hours. This work presents a global, open-source, reduced-complexity air quality model to facilitate policy assessment worldwide, providing a screening tool for reducing air pollution-related deaths where they occur most.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Mortalidade Prematura , Material Particulado/análise , Estados Unidos
20.
Environ Sci Atmos ; 2(5): 1221-1236, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36277744

RESUMO

Particulate matter from biomass burning emissions affects air quality, ecosystems and climate; however, quantifying these effects requires that the connection between primary emissions and secondary aerosol production is firmly established. We performed atmospheric simulation chamber experiments on the chemical oxidation of residential biomass burning emissions under dark conditions. Biomass burning organic aerosol was found to age under dark conditions, with its oxygen-to-carbon ratio increasing by 7-34% and producing 1-38 µg m-3 of secondary organic aerosol (5-80% increase over the fresh organic aerosol) after 30 min of exposure to NO3 radicals in the chamber (corresponding to 1-3 h of exposure to typical nighttime NO3 radical concentrations in an urban environment). The average mass concentration of SOA formed under dark-oxidation conditions was comparable to the mass concentration formed after 3 h (equivalent to 7-10 h of ambient exposure) under ultraviolet lights (6 µg m-3 or a 47% increase over the emitted organic aerosol concentration). The dark-aging experiments showed a substantial increase in secondary nitrate aerosol (0.12-3.8 µg m-3), 46-100% of which is in the form of organic nitrates. The biomass burning aerosol pH remained practically constant at 2.8 throughout the experiment. This value promotes inorganic nitrate partitioning to the particulate phase, potentially contributing to the buildup of nitrate aerosol in the boundary layer and enhancing long-range transport. These results suggest that oxidation through reactions with the NO3 radical is an additional secondary aerosol formation pathway in biomass burning emission plumes that should be accounted for in atmospheric chemical-transport models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA