Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mediators Inflamm ; 2023: 6051946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687218

RESUMO

Based on the multiomics analysis, this study is aimed at investigating the underlying mechanism of didymin against acute liver injury (ALI). The mice were administrated with didymin for 2 weeks, followed by injection with lipopolysaccharide (LPS) plus D-galactosamine (D-Gal) to induce ALI. The pathological examination revealed that didymin significantly ameliorated LPS/D-Gal-induced hepatic damage. Also, it markedly reduced proinflammatory cytokines release by inhibiting the TLR4/NF-κB pathway activation, alleviating inflammatory injury. A transcriptome analysis proved 2680 differently expressed genes (DEGs) between the model and didymin groups and suggested that the PI3K/Akt and metabolic pathways might be the most relevant targets. Meanwhile, the metabolome analysis revealed 67 differently expressed metabolites (DEMs) between the didymin and model groups that were mainly clustered into the glycerophospholipid metabolism, which was consistent with the transcriptome study. Importantly, a comprehensive analysis of both the omics indicated a strong correlation between the DEGs and DEMs, and an in-depth study demonstrated that didymin alleviated metabolic disorder and hepatocyte injury likely by inhibiting the glycerophospholipid metabolism pathway through the regulation of PLA2G4B, LPCAT3, and CEPT1 expression. In conclusion, this study demonstrates that didymin can ameliorate LPS/D-Gal-induced ALI by inhibiting the glycerophospholipid metabolism and PI3K/Akt and TLR4/NF-κB pathways.


Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Transcriptoma , Receptor 4 Toll-Like/metabolismo , Fígado/metabolismo , Metaboloma , Glicerofosfolipídeos/metabolismo , Glicerofosfolipídeos/farmacologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Fosfolipases A2 do Grupo IV/farmacologia
2.
Clin Infect Dis ; 71(16): 2052-2060, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32307550

RESUMO

BACKGROUND: The World Health Organization characterizes novel coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as a pandemic. Here, we investigated the clinical, cytokine levels; T-cell proportion; and related gene expression occurring in patients with COVID-19 on admission and after initial treatment. METHODS: Eleven patients diagnosed with COVID-19 with similar initial treatment regimens were enrolled in the hospital. Plasma cytokine, peripheral T cell proportions, and microfluidic quantitative polymerase chain reaction analyses for gene expression were conducted. RESULTS: Five patients with mild and 6 with severe disease were included. Cough and fever were the primary symptoms in the 11 COVID-19 cases. Older age, higher neutrophil count, and higher C-reactive protein levels were found in severe cases. IL-10 level significantly varied with disease progression and treatment. Decreased T-cell proportions were observed in patients with COVID-19, especially in severe cases, and all were returned to normal in patients with mild disease after initial treatment, but only CD4+ T cells returned to normal in severe cases. The number of differentially expressed genes (DEGs) increased with the disease progression, and decreased after initial treatment. All downregulated DEGs in severe cases mainly involved Th17-cell differentiation, cytokine-mediated signaling pathways, and T-cell activation. After initial treatment in severe cases, MAP2K7 and SOS1 were upregulated relative to that on admission. CONCLUSIONS: Our findings show that a decreased T-cell proportion with downregulated gene expression related to T-cell activation and differentiation occurred in patients with severe COVID-19, which may help to provide effective treatment strategies for COVID-19.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Idoso , Linfócitos T CD4-Positivos/metabolismo , COVID-19/virologia , Diferenciação Celular/fisiologia , Biologia Computacional , Feminino , Humanos , Interleucina-10/metabolismo , MAP Quinase Quinase 7/metabolismo , Masculino , Microfluídica , Pessoa de Meia-Idade , Proteína SOS1/metabolismo , Transdução de Sinais/fisiologia , Células Th17/metabolismo
3.
Biochem Biophys Res Commun ; 509(2): 535-540, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30598263

RESUMO

AZD3759 is a tyrosine kinase inhibitor and has an encouraging future in treating brain metastases of non-small cell lung cancer. Here, we determined that AZD3759 suppressed the viability of HepG2 cells, a hepatoma cell line, and induced their apoptosis, suggesting a new therapeutic potential of AZD3759 in hepatocellular carcinoma (HCC) treatment. Furthermore, we found that the activation of p53-SMAD family member 4 (SMAD4) positive feedback loop was involved in the induction of bulks of apoptosis in HepG2 cells in response to AZD3759 treatment. In this positive feedback loop, p53 induced the expression of SMAD4 by directly promoting its transcription as shown by p53 could bind to SMAD4 promoter; SMAD4, in turn, promoted the nuclear translocation of p53, which increased the transcription of pro-apoptotic genes, including PUMA and BAX (two p53 target genes) and finally resulted in apoptosis. To the best of our knowledge, p53-induced SMAD4 transcription and SMAD4-determined the sub-location of p53 have not been reported. Taken together, our results demonstrated that AZD3759 might be an alternative strategy for HCC treatment and activating p53-SMAD4 positive feedback loop might enhance its therapeutic effects on HCC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Piperazinas/farmacologia , Quinazolinas/farmacologia , Proteína Smad4/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad4/genética , Proteína Supressora de Tumor p53/genética
4.
Mol Carcinog ; 58(11): 2118-2126, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31465134

RESUMO

Sorafenib is the standard first-line systemic chemotherapeutic drugs for advanced hepatocellular carcinoma (HCC), but acquired resistance to sorafenib is frequently observed in clinical practice. In this study, we first produced three sorafenib resistance (SR) HCC cell lines by using two human HCC cell lines (Hep3B and Huh7) and a human primary HCC cell line. We identified that epidermal growth factor receptor (EGFR) and Kruppel-like factor 4 (KLF4) are dramatically increased in the three SR HCC cell lines. Either inhibition of tyrosine kinase activity of EGFR with Erlotinib/Icotinib or inhibition of KLF4 expression with short hairpin RNA recovered the response of three SR HCC cell lines to sorafenib, suggesting the critical roles of EGFR tyrosine kinase and KLF4 on inducing SR. Luciferase activity and chromatin immunoprecipitation assays further determined that KLF4 promoted EGFR expression through inducing its transcription by directly binding to its promoter. EGFR, conversely, could also promote KLF4 expression through inducing its transcription by binding to its promoter in a tyrosine kinase-dependent manner, suggesting that a positive feedback loop formed by EGFR and KLF4 further amplifies their effects on inducing SR. Up to now, our findings that KLF4 induces the development of SR and it cooperates with EGFR to form a positive feedback loop to amplify their SR-inducing abilities have rarely been reported. Our findings bear possible implications for the improvement of the efficacy of sorafenib in HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Hepáticas/tratamento farmacológico , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fator 4 Semelhante a Kruppel , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biochem Biophys Res Commun ; 498(3): 453-457, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501488

RESUMO

Full-length apoptosis-inducing factor mitochondrion-associated 1 (AIFM1) (∼67 kDa) induces apoptosis in a caspase-independent manner when it is cleaved at its N-terminus to produce truncated AIFM1 (∼57 kDa). Here, we produced recombinant adenovirus AIFM1 (rAd-AIFM1) encoding full-length AIFM1 to detect whether full-length AIFM1 suppresses cell growth and induces apoptosis of hepatoma cell lines (HepG2 and Hep3B). Hepatocellular carcinoma (HCC) is one of the most difficult cancers to treat worldwide. The MTT assay demonstrated that full-length AIFM1 inhibited the growth of hepatoma cells because rAd-AIFM1 infection suppressed the proliferation of HepG2 and Hep3B cells. TUNEL assay demonstrated that full-length AIFM1 overexpression induced apoptosis in HepG2 and Hep3B cells infected with rAd-AIFM1, suggesting an apoptosis-inducing ability of full-length AIFM1. Our data further showed that the expression of two pro-apoptotic genes, caspase3 and DRAM, were involved in full-length AIFM1 infection-induced apoptosis, and full-length AIFM1 could also positively regulate the transcription of caspase3 and DRAM. Thus, overexpression of full-length AIFM1 can induce caspase-dependent apoptosis and suppresses cell growth of hepatoma cells. Our data uncover a potential role of rAd-AIFM1 in HCC gene therapy.


Assuntos
Fator de Indução de Apoptose/genética , Carcinoma Hepatocelular/genética , Caspase 3/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Proteínas de Membrana/genética , Apoptose , Carcinoma Hepatocelular/patologia , Proliferação de Células , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Ativação Transcricional , Regulação para Cima
6.
J Antimicrob Chemother ; 73(11): 3114-3121, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351437

RESUMO

Objectives: There is growing concern about mitochondrial DNA (mtDNA) mutations with long-term NRTI exposure in HIV-1 infected children. Methods: Twenty-four HIV-1 infected children who started ART more than 2 years earlier who had an excellent virological response and had not changed their regimen were enrolled retrospectively. Their corresponding PBMCs in 2009 (T1), 2010 (T2) and 2013 (T3) were included. Sequencing of the entire mtDNA using next-generation sequencing revealed the spectrum of mtDNA variants. Results: The trend showed that the number of mtDNA mutations during ART occurred as T1 < T2 < T3 (P = 0.086). Interestingly, the numbers of whole mtDNA mutations at T3 (median 41, range 24-62) were significantly greater than at T1 (34, 25-46, P = 0.029). A positive correlation was found between total mtDNA mutations and treatment time (r = 0.352, P = 0.002). During the observation period, mtDNA mutations more frequently occurred in the D-loop, cytochrome b (CYTB) and 12S rRNA regions. The heteroplasmic ratio of T3 was higher than that of T1 in CYTB and 12S rRNA (P = 0.034 and P = 0.042, respectively). High heteroplasmic population levels were found at nt 263 (A263G, D-loop) and nt 8860 (A8860G, ATPase6). A significant difference in heteroplasmy between T1, T2 and T3 occurred at nt 14783 (T14783C, CYTB, P = 0.048, T3 > T2 > T1). Conclusions: Our findings reveal the spectrum of mtDNA variants in HIV-1-infected children who had an excellent virological response. mtDNA mutations accumulated during ART may play an important role in facilitating the occurrence of mitochondrial dysfunction.


Assuntos
Fármacos Anti-HIV/efeitos adversos , Terapia Antirretroviral de Alta Atividade/efeitos adversos , DNA Mitocondrial/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Adolescente , Fármacos Anti-HIV/uso terapêutico , Criança , China , Biologia Computacional , Feminino , Variação Genética , HIV-1/efeitos dos fármacos , Humanos , Masculino , Mutação , RNA Ribossômico/genética , Estudos Retrospectivos , Análise de Sequência de DNA
7.
Dig Dis Sci ; 63(1): 146-154, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196956

RESUMO

BACKGROUND: Apoptosis-stimulating protein of p53-2 (ASPP2) is a damage-inducible P53-binding protein that enhances damage-induced apoptosis. Fibrosis is a wound-healing response, and hepatic stellate cells (HSCs) are key players in liver fibrogenesis. However, little is known about the relationship between ASPP2 and hepatic fibrosis. AIMS: We investigated the effects of ASPP2 overexpression in HSCs and the role of ASPP2 in mouse liver fibrogenesis. METHODS: Human HSCs (LX-2 cells) were pre-incubated with GFP adenovirus (Ad) or ASPP2 adenovirus (AdASPP2) for 24 h and then treated with or without TGF-ß1. ASPP2+/- and ASPP2+/+ Balb/c mice were used to examine the effects of ASPP2 on liver fibrosis in vivo. ASPP2+/+ Balb/c mice were generated by injecting AdASPP2 into the tail vein of ASPP2 WT Balb/c mice; all mice received intraperitoneal injections of carbon tetrachloride. RESULTS: In this study, ASPP2 was found to markedly inhibit TGF-ß1-induced fibrogenic activation of LX-2 cells. Further experiments using an autophagic flux assay confirmed that ASPP2 reduced the fibrogenic activation of LX-2 cells by inhibiting autophagy. Moreover, we found that ASPP2 overexpression attenuated the anti-apoptotic effects of TGF-ß1 in LX-2 cells. The extent of liver fibrosis was markedly reduced in ASPP2+/+ mouse liver tissue compared with control mice; however, in ASPP2+/- mice, hepatic collagen deposition was significantly increased. CONCLUSION: These results suggest that TGF-ß1-induced autophagy is required for the fibrogenic response in LX-2 cells and that ASPP2 may both inhibit TGF-ß1-induced autophagy and decrease liver fibrosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Intoxicação por Tetracloreto de Carbono , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Supressoras de Tumor/genética
8.
Tumour Biol ; 39(3): 1010428317695026, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28351301

RESUMO

Overexpression of apoptosis-stimulating protein 2 of p53 (ASPP2) induces apoptotic cell death in hepatoma cells (e.g. HepG2 cells) by enhancing the transactivation activity of p53, but long-term ASPP2 overexpression fails to induce more apoptosis since activation of the epidermal growth factor/epidermal growth factor receptor/SOS1 pathway impairs the pro-apoptotic role of ASPP2. In this study, in recombinant adenovirus-ASPP2-infected HepG2 cells, ASPP2 overexpression induces amphiregulin expression in a p53-dependent manner. Although amphiregulin initially contributes to ASPP2-induced apoptosis, it eventually impairs the pro-apoptotic function of ASPP2 by activating the epidermal growth factor/epidermal growth factor receptor/SOS1 pathway, leading to apoptosis resistance. Moreover, blocking soluble amphiregulin with a neutralizing antibody also significantly increased apoptotic cell death of HepG2 cells due to treatment with methyl methanesulfonate, cisplatin, or a recombinant p53 adenovirus, suggesting that the function of amphiregulin involved in inhibiting apoptosis may be a common mechanism by which hepatoma cells escape from stimulus-induced apoptosis. Thus, our data elucidate an apoptosis-evasion mechanism in hepatocellular carcinoma and have potential implications for hepatocellular carcinoma therapy.


Assuntos
Anfirregulina/genética , Proteínas Reguladoras de Apoptose/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteína Supressora de Tumor p53/genética , Adenoviridae/genética , Anfirregulina/biossíntese , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/biossíntese , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Cisplatino/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Proteínas Recombinantes/genética , Transfecção
9.
Microbes Infect ; : 105374, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38849069

RESUMO

OBJECTIVE: The lung microbiota of patients with pulmonary diseases is disrupted and impacts the immunity. The microbiological and immune landscape of the lungs in patients with pneumocystis pneumonia (PCP) remains poorly understood. METHODS: Multi-omics analysis and machine learning were performed on bronchoalveolar lavage fluid to explore interaction between the lung microbiota and host immunity in PCP. Then we constructed a diagnostic model using differential genes with LASSO regression and validated by qPCR. The immune infiltration analysis was performed to explore the landscape of lung immunity in patients with PCP. RESULTS: Patients with PCP showed a low alpha diversity of lung microbiota, accompanied by the elevated abundance of Firmicutes, and the differential expressed genes (DEGs) analysis displayed a downregulation of MAPK signaling. The MAPK10, TGFB1, and EFNA3 indicated a potential to predict PCP (AUC = 0.86). The lung immune landscape in PCP showed the lower levels of naïve CD4+ T cells and activated dendritic cells. The correlation analysis of the MAPK signaling pathway-related DEGs and the differential microorganisms at the level of phylum showed that the Firmicutes was negatively correlated with these DEGs. CONCLUSION: We profiled the characteristics of lung microbiota and immune landscape in PCP, which may contribute to elucidating the mechanism of PCP.

10.
BMC Mol Biol ; 14: 15, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23837869

RESUMO

BACKGROUND: The co-activator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of HuR. However, the functional impact of this modification is not fully understood. Here, we investigated the influence of HuR methylation by CARM1 upon the turnover of HuR target mRNAs encoding senescence-regulatory proteins. RESULTS: Changing the methylation status of HuR in HeLa cells by either silencing CARM1 or mutating the major methylation site (R217K) greatly diminished the effect of HuR in regulating the turnover of mRNAs encoding cyclin A, cyclin B1, c-fos, SIRT1, and p16. Although knockdown of CARM1 or HuR individually influenced the expression of cyclin A, cyclin B1, c-fos, SIRT1, and p16, joint knockdown of both CARM1 and HuR did not show further effect. Methylation by CARM1 enhanced the association of HuR with the 3'UTR of p16 mRNA, but not with the 3'UTR of cyclin A, cyclin B1, c-fos, or SIRT1 mRNAs. In senescent human diploid fibroblasts (HDFs), reduced CARM1 was accompanied by reduced HuR methylation. In addition, knockdown of CARM1 or mutation of the major methylation site of HuR in HDF markedly impaired the ability of HuR to regulate the expression of cyclin A, cyclin B1, c-fos, SIRT1, and p16 as well to maintain a proliferative phenotype. CONCLUSION: CARM1 represses replicative senescence by methylating HuR and thereby enhancing HuR's ability to regulate the turnover of cyclin A, cyclin B1, c-fos, SIRT1, and p16 mRNAs.


Assuntos
Células/citologia , Senescência Celular , Proteínas ELAV/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Regiões 3' não Traduzidas , Ciclo Celular , Células/enzimologia , Células/metabolismo , Ciclina A/genética , Ciclina A/metabolismo , Ciclina B1/genética , Ciclina B1/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas ELAV/genética , Regulação da Expressão Gênica , Humanos , Metilação , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
11.
Aging (Albany NY) ; 15(8): 2970-2998, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37053008

RESUMO

The Ubiquitin-proteasome system (UPS) performs a crucial role in immune activation and tumorigenesis. Nevertheless, the comprehensive role of the ubiquitin-proteasome system in the low-grade glioma (LGG) tumor microenvironment (TME) remains unknown. Ubiquitination modification patterns in LGG patients and corresponding characteristics of tumor immune traits, CSC stemness, and cellular senescence were evaluated via a comprehensive analysis of 20 ubiquitination modification regulators. For quantification of the ubiquitination modification status of individual patients, the UM-score was constructed and associated with TME characteristics, clinical features, cancer stem cell stemness, cellular senescence, prognosis, and immunotherapy efficacy. We identified that alterations in multiple ubiquitination regulators are linked to patient survival and the shaping of the tumor microenvironment. We found two different styles of ubiquitination modification in patients with low-grade glioma (immune-inflamed differentiation and immune-exclude dedifferentiation), characterized by high and low UM-score, and the two regulatory patterns of ubiquitination modification on immunity, stemness feature, and cellular senescence. We demonstrate that the UM-score could forecast the subtype of LGG, the immunologic infiltration traits, the biological process, the stemness feature, and the cellular senescence trait. Notably, the UM-score was related to immunotherapeutic efficacy, implying that modifying ubiquitination modification patterns by targeting ubiquitination modification regulators or ubiquitination modification pattern signature genes to reverse unfavorable TME properties will provide new insights into cancer immunotherapy. This research indicated that the ubiquitin-proteasome system is crucial in the formation of TME complexity and multiformity. The UM-score can determine ubiquitination modification status in individual patients, bringing about more personalized and effective immunotherapeutic tactics.


Assuntos
Glioma , Complexo de Endopeptidases do Proteassoma , Humanos , Ubiquitina , Microambiente Tumoral , Ubiquitinação , Glioma/terapia , Senescência Celular , Prognóstico
12.
Front Chem ; 10: 844426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308794

RESUMO

Application of drug combinations is a powerful strategy for the therapy of advanced gastric cancer. However, the clinical use of such combinations is greatly limited by the occurrence of severe systemic toxicity. Although polymeric-prodrug-based nanococktails can significantly reduce toxicity of drugs, they have been shown to have low intracellular drug release. To balance between efficacy and safety during application of polymeric-prodrug-based nanococktails, a reactive oxygen species (ROS)-responsive nanococktail (PCM) with self-amplification drug release was developed in this study. In summary, PCM micelles were co-assembled from ROS-sensitive cucurbitacin B (CuB) and paclitaxel (PTX) polymeric prodrug, which were fabricated by covalently grafting PTX and CuB to dextran via an ROS-sensitive linkage. To minimize the side effects of the PCM micelles, a polymeric-prodrug strategy was employed to prevent premature leakage. Once it entered cancer cells, PCM released CuB and PTX in response to ROS. Moreover, the released CuB further promoted ROS generation, which in turn enhanced drug release for better therapeutic effects. In vivo antitumor experiments showed that the PCM-treated group had lower tumor burden (tumor weight was reduced by 92%), but bodyweight loss was not significant. These results indicate that the developed polymeric prodrug, with a self-amplification drug release nanococktail strategy, can be an effective and safe strategy for cancer management.

13.
Eur J Pharmacol ; 917: 174749, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007522

RESUMO

Isovitexin (IVT) has been shown to have a potential therapeutic effect on acute liver injury (ALI), but its underlying mechanisms especially the targets remain unclear, which was investigated in the present study. Briefly, the targets of IVT were predicted by bioinformatics and then were verified by multiple examinations using molecular docking, cellular thermal shift assay (CETSA), and Lipopolysaccharide/D-Galactosamine (LPS/D-GalN)-induced ALI animal model. The bioinformatic analysis predicted that the target genes of IVT against ALI were enriched into the PI3K/Akt and ERS-related pathways, in which, molecular docking and CETSA examination verified that the binding sites of IVT likely were PTEN, PI3K and BiP. Furthermore, the possible targets were also verified by animal experiments. The results revealed that IVT significantly ameliorated the hepatic injury, as evidenced by the attenuation of histopathological changes and the reduction in serum aminotransferase and total bilirubin activities. In addition, IVT treatment led to the reduction of PTEN, BiP and ERS-related targets expressions, as well as the elevation of PI3K, Akt and mTOR expressions. Notably, IVT significantly decreased total hepatic m6A level and m6A enrichment of PTEN and BiP, suggesting IVT regulated PTEN and BiP by modulating m6A modification. To sum up, the results indicate that IVT significantly ameliorates ALI, which is attributed to its ability to regulate the PI3K/Akt pathway and ERS by targeting PTEN, PI3K and BiP via modification of m6A. Our finding demonstrates that IVT may be a promising natural medicine for the treatment of ALI.


Assuntos
Fosfatidilinositol 3-Quinases
14.
Comput Math Methods Med ; 2022: 3764914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532833

RESUMO

Background: Fatty acid binding protein 4 (FABP4) is mainly involved in the regulation of systemic metabolism through various lipid signaling pathways. Metabolic reprogramming is one of the important factors in the development and progression of cancer. It has been recently reported that FABP4 is closely related to the development of cancer and may be involved in tumor invasion and metastasis. Methods: In this study, we explored the expression pattern of FABP4 in pancancer through TCGA and CPTAC. Using TCGA, Kaplan-Meier Plotter, and STRING databases, to explore its diagnostic and prognostic value, and function through GO/KEGG and GSEA. Then, using the TIMER2.0 database, we investigated the correlation between FABP4 expression and immune infiltration in cancers, especially stomach adenocarcinomas (STAD) and colorectal adenocarcinoma (COADREAD). Results: Compared with normal tissues, the expression of FABP4 in more than 10 tumor tissues was lower (p < 0.05). Through the receiver operating characteristic (ROC) curve, the diagnostic value was found higher in colorectal cancer, breast cancer, thyroid cancer, and lung cancer, with the area under the curve (AUC) > 0.9. Through the K-M curve, FABP4 was found to correlate to the prognosis of various cancers. The results of gastric cancer and colorectal cancer are consistent. The low-expression group has a better prognosis than the high-expression group, and the expression of FABP4 in the early T and N stages of gastrointestinal tumors is lower. FABP4 highly expressed gene set is mostly enriched in extracellular matrix degradation and cell adhesion functions. Gastrointestinal tumors with high expression of FABP4 may have more immunosuppressive effects on macrophages and have a worse prognosis. Conclusion: FABP4 can be used as a diagnostic and prognostic biomarker in pancancer, and its high expression in gastrointestinal tumors suggests poor prognosis. This may be correlated to the immune infiltration of macrophages and epithelial-mesenchymal transition.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Neoplasias Gástricas , Humanos , Prognóstico , Biologia Computacional , Proteínas de Ligação a Ácido Graxo/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Biomarcadores Tumorais/genética
15.
Phys Rev Lett ; 106(23): 236102, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21770523

RESUMO

Monte Carlo simulations of (fluctuating) interfaces in Ising models confined between competing walls at temperatures above the wetting transition are presented and various correlation functions probing the interfacial fluctuation are computed. Evidence for the nonlocal interface Hamiltonian approach of A. O. Parry et al. [Phys. Rev. Lett. 93, 086104 (2004)] is given. In particular, we show that two correlation lengths exist with different dependence on the distance D between the walls.

16.
Adv Sci (Weinh) ; 8(13): e2004683, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37733361

RESUMO

Hepatocellular carcinoma (HCC) originates from fully differentiated hepatocytes, but the decisive events for converting hepatocytes to the cells of origin for HCC are still unclear. Liver cancer stem cells (LCSCs) cause HCC but are not bona fide cells of origin. Here, the expressions of POU2F2 and IL-31 are identified in macroscopically normal livers of diethylnitrosamine-challenged mice. An autoregulatory circuit formed by mutual induction between POU2F2 and IL-31 drives hepatocytes to progress to LCSCs by acquiring stemness, as well as stimulates them to in vivo grow and malignantly progress. The development of the autoregulatory circuit is a decisive event for converting hepatocytes into the cells of origin, since hepatocytes expressing the circuit have acquired tumorigenic potential before progressing to LCSCs. Nonetheless, acquiring stemness is still required for the cells of origin to initiate hepatocarcinogenesis. The circuit also occurs in human cirrhotic tissues, partially elucidating how premalignant lesions progress to HCC.

17.
Biomed Pharmacother ; 129: 110375, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32540645

RESUMO

Endoplasmic reticulum stress (ERS), mutual crosstalk between autophagy and apoptosis-related signaling pathway, plays an important role in the process of acute liver injury (ALI). The present study was to investigate the effects and underlying mechanisms of Asiatic acid from Potentilla chinensis (AAPC) on ALI. The model of ALI in mice was induced by administration with Lipopolysaccharide/D-Galactosamine (LPS/D-GalN). The effects of AAPC on hepatic pathology and hepatocyte apoptosis were observed by hematoxylin-eosin (H&E) staining and TUNEL staining. Serum transaminases activities were measured using an automated biochemical analyzer. Moreover, ERS and autophagy were induced in LO2 cells, respectively. Cell cycle and apoptosis were analyzed using flow cytometry. In addition, ERS and autophagy-related pathways were detected in vivo and in vitro. The results showed that AAPC significantly ameliorated LPS/D-GalN-induced ALI in mice, as evidenced by the improvement of liver pathology and the decrease in serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activities. Moreover, AAPC pre-treatment markedly inhibited thapsigargin-induced cell apoptosis, accompanied by cell cycle arrest at S/G1 phase in LO2 cells. AAPC notably inhibited the activation of the PERK/ATF6 and IRE1 pathway, alleviating the extent of ERS. Additionally, AAPC significantly promoted autophagy, as evidenced by the increase in the formation of autophagic vacuoles and the number of autophagosomes as well as the increased expressions of LC3II/I, Beclin-1, Atg5 and Atg7. In summary, our results indicate that AAPC significantly ameliorates ALI by inhibiting the ERS pathway and promoting hepatocyte autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Galactosamina , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Lipopolissacarídeos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL
18.
Int Immunopharmacol ; 88: 107003, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33182043

RESUMO

The present study aimed to investigate the protective effects and mechanisms of Didymin from Mentha spicata on non-alcoholic fatty liver disease (NAFLD) induced by dexamethasone and high-fat diet (DEX/HFD) in C57BL/6J mice. Briefly, mice were acclimated for 5 days and then subjected to DEX/HFD from days 5 to 28; meanwhile, the animals were treated with Didymin or Silibinin from days 12 to 28. Key indicators of NAFLD were then detected, including the pathological changes of liver tissues, serum biochemical indicators, inflammation, oxidative stress, apoptosis and lipid metabolism. Besides, the expressions of pivotal genes and proteins of the TLR4/NF-κB and PI3K/Akt pathways were examined to further elucidate the mechanisms of Didymin. The results demonstrated that Didymin significantly extenuated hepatocyte damage and lipid disorder. Moreover, Didymin markedly decreased hepatocyte apoptosis by regulating the expressions of B-cell lymphoma-2 (Bcl-2) family and the expressions of the caspase family. Further study elucidated that Didymin decreased the expressions of toll-like receptor 4 (TLR4), as well as the phosphorylation of inhibitor of nuclear factor kappa-B (IκB) and nuclear factor kappa-B p65 (NF-κB p65), suggesting the inhibition of Didymin on the TLR4/NF-κB pathway. Similarly, the PI3K/Akt pathway was also inhibited by Didymin, as evidenced by the decrease in the phosphorylation levels of PI3K and Akt. In summary, this study indicates that Didymin mitigates NAFLD by alleviating lipidosis and suppressing the TLR4/NF-κB and PI3K/Akt pathways, which may be a potential natural medicine for the treatment of NAFLD.


Assuntos
Flavonoides/uso terapêutico , Glicosídeos/uso terapêutico , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Dexametasona/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Distribuição Aleatória , Receptor 4 Toll-Like/genética
19.
Cell Death Dis ; 11(6): 429, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513989

RESUMO

Although most patients with COVID-19 pneumonia have a good prognosis, some patients develop to severe or critical illness, and the mortality of critical cases is up to 61.5%. However, specific molecular information about immune response in critical patients with COVID-19 is poorly understood. A total of 54 patients were enrolled and divided into three groups, among which 34 were common, 14 were severe, and 6 were critical. The constitution of peripheral blood mononuclear cells (PBMC) in patients was analyzed by CyTOF. The profile of cytokines was examined in plasma of patients using luminex. The IL-2 signaling pathway was investigated in the PBMC of patients by qRT-PCR. The count and percentage of lymphocytes were significantly decreased in critical patients compared to common and severe patients with COVID-19 pneumonia. The count of T cells, B cells, and NK cells was remarkably decreased in critical patients compared to normal controls. The percentage of CD8+ T cells was significantly lower in critical patients than that in common and severe patients with COVID-19 pneumonia. The expression of IL-2R, JAK1, and STAT5 decreased in PBMC of common, severe, and critical patients, but IL-2 level was elevated in severe patients and decreased in critical patients with COVID-19 pneumonia. The decrease of CD8+ T cells in critical patients with COVID-19 pneumonia may be related to the IL-2 signaling pathway. The inhibition of IL-2/IL-2R gives rise to CD8+ T cell and lymphocyte decrease through JAK1-STAT5 in critical patients with COVID-19 pneumonia.


Assuntos
Betacoronavirus , Linfócitos T CD8-Positivos/imunologia , Infecções por Coronavirus/sangue , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-2/sangue , Janus Quinase 1/metabolismo , Pneumonia Viral/sangue , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Infecções por Coronavirus/virologia , Estado Terminal , Feminino , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2
20.
Am J Transl Res ; 10(7): 2055-2067, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30093943

RESUMO

OBJECTIVE: The use of human epidermal growth factor receptor-2 (HER2) as a biomarker for gastric cancer (GC) has greatly helped some patients receive benefit from HER2-targeted therapy. However, the correlation between HER2 and other biochemical markers is unclear. The aim of this study was to examine the relationship between HER2 and lactate dehydrogenase A (LDHA) in GC tissues and GC cells. METHODS: The correlation between clinicopathological features and HER2 was analyzed in 179 cases of GC. The expression of HER2 and LDHA was examined by immunohistochemical staining in 12 pairs of GC tissues and by western blotting in seven pairs of fresh GC tissues and adjacent normal tissues. Wound healing, transwell migration assay, quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR), and LDH activity assays were performed with GC cells. RESULTS: HER2 expression and serum LDH levels were closely correlated (P = 0.027) in 179 GC patient cases. Immunohistochemical staining demonstrated a positive correlation between HER2 and LDHA in 12 pairs of GC tissues (P = 0.0308). Knocking down LDHA suppressed cell migration and invasion in GC cells. In addition, HER2 positively regulated hypoxia-inducible factor-1α (HIF-1α) and LDHA. Furthermore, the expressions of HER2, HIF-1α, and LDHA were consistent in 5/7 pairs of fresh GC tissues and adjacent normal tissues as well as in GC cell lines. CONCLUSIONS: The HER2-HIF-1α-LDHA axis may serve as the basis for new methods and strategies for the treatment of GC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA