Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(28): 19108-19117, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38847788

RESUMO

Previous findings have suggested a close association between oxygen vacancies in SnO2 and charge carrier recombination as well as perovskite decomposition at the perovskite/SnO2 interface. Underlying the fundamental mechanism holds great significance in achieving a more favorable balance between the efficiency and stability. In this study, we prepared three SnO2 samples with different oxygen vacancy concentrations and observed that a low oxygen vacancy concentration is conducive to long-term device stability. Iodide ions were observed to easily diffuse into regions with high oxygen vacancies, thereby speeding up the deprotonation of FAI, as made evident by the detection of the decomposition product formamide. In contrast, a high oxygen vacancy concentration in SnO2 could prevent hole injection, leading to a decrease in interfacial recombination losses. To suppress this decomposition reaction and address the trade-off, we designed a bilayer SnO2 structure to ensure highly efficient carrier transport still while maintaining a chemically inert surface. As a result, an enhanced efficiency of 25.06% (certified at 24.55% with an active area of 0.09 cm2 under fast scan) was achieved, and the extended operational stability maintained 90% of their original efficiency (24.52%) after continuous operation for nearly 2000 h. Additionally, perovskite submodules with an active area of 14 cm2 were successfully assembled with a PCE of up to 22.96% (20.09% with an aperture area).

2.
Small ; 20(19): e2308266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100155

RESUMO

Developing well-crystallized light-absorbing layers remains a formidable challenge in the progression of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. A critical aspect of optimizing CZTSSe lies in accurately governing the high-temperature selenization reaction. This process is intricate and demanding, with underlying mechanisms requiring further comprehension. This study introduces a precursor microstructure-guided hetero-nucleation regulation strategy for high-quality CZTSSe absorbers and well-performing solar cells. The alcoholysis of 2-methoxyethanol (MOE) and the generation of high gas-producing micelles by adding hydrogen chloride (HCl) as a proton additive into the precursor solution are successfully suppressed. This tailored modification of solution components reduces the emission of volatiles during baking, yielding a compact and dense precursor microstructure. The reduced-roughness surface nurtures the formation of larger CZTSSe nuclei, accelerating the ensuing Ostwald ripening process. Ultimately, CZTSSe absorbers with enhanced crystallinity and diminished defects are fabricated, attaining an impressive 14.01% active-area power conversion efficiency. The findings elucidate the influence of precursor microstructure on the selenization reaction process, paving a route for fabricating high-quality kesterite CZTSSe films and high-efficiency solar cells.

3.
Small ; : e2310455, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682596

RESUMO

Organometal halide perovskite solar cells (PSCs) have received great attention owing to a rapid increase in power conversion efficiency (PCE) over the last decade. However, the deficit of long-term stability is a major obstacle to the implementation of PSCs in commercialization. The defects in perovskite films are considered as one of the primary causes. To address this issue, isocyanic acid (HNCO) is introduced as an additive into the perovskite film, in which the added molecules form covalent bonds with FA cations via a chemical reaction. This chemical reaction gives rise to an efficient passivation on the perovskite film, resulting in an improved film quality, a suppressed non-radiation recombination, a facilitated carrier transport, and optimization of energy band levels. As a result, the HNCO-based PSCs achieve a high PCE of 24.41% with excellent storage stability both in an inert atmosphere and in air. Different from conventional passivation methods based on coordination effects, this work presents an alternative chemical reaction for defect passivation, which opens an avenue toward defect-mitigated PSCs showing enhanced performance and stability.

4.
Angew Chem Int Ed Engl ; : e202410454, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994649

RESUMO

Host-guest complexation offers a promising approach for mitigating surface defects in perovskite solar cells (PSCs). Crown ethers are the most widely used macrocyclic hosts for complexing perovskite surfaces, yet their supramolecular interactions and functional implications require further understanding. Here we show that the dipole moment of crown ethers serves as an indicator of supramolecular interactions with both perovskites and precursor salts. A larger dipole moment, achieved through the substitution of heteroatoms, correlates with enhanced coordination with lead cations. Perovskite films incorporating aza-crown ethers as additives exhibited improved morphology, reduced defect densities, and better energy-level alignment compared to those using native crown ethers. We report power-conversion efficiencies (PCEs) exceeding 25% for PSCs, which show enhanced long-term stability, and a record PCE of 21.5% for host-guest complexation-based perovskite solar modules with an active area of 14.0 cm2.

5.
Adv Mater ; 36(13): e2310962, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111378

RESUMO

Perovskite solar cells (PSCs) have attracted extensive attention due to their higher power conversion efficiency (PCE) and simple fabrication process. However, the open-circuit voltage (VOC) loss remains a significant impediment to enhance device performance. Here, a facile strategy to boost the VOC to 95.5% of the Shockley-Queisser (S-Q) limit through the introduction of a universal multifunctional polymer additive is demonstrated. This additive effectively passivates the cation and anion defects simultaneously, thereby leading to the transformation from the strong n-type to weak n-type of perovskite films. Benefitting from the energy level alignment and the suppression of bulk non-radiative recombination, the quasi-Fermi level splitting (QFLS) is enhanced.  Consequently, the champion devices with 1.59 eV-based perovskite reach the highest VOC value of 1.24 V and a PCE of 23.86%. Furthermore, this strategy boosts the VOC by at least 0.07 V across five different perovskite systems, a PCE of 25.04% is achieved for 1.57 eV-based PSCs, and the corresponding module (14 cm2) also obtained a high PCE of 21.95%. This work provides an effective and universal strategy to promote the VOC approach to the detailed balance theoretical limit.

6.
Nat Commun ; 15(1): 2329, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485944

RESUMO

Intragrain impurities can impart detrimental effects on the efficiency and stability of perovskite solar cells, but they are indiscernible to conventional characterizations and thus remain unexplored. Using in situ scanning transmission electron microscopy, we reveal that intragrain impurity nano-clusters inherited from either the solution synthesis or post-synthesis storage can revert to perovskites upon irradiation stimuli, leading to the counterintuitive amendment of crystalline grains. In conjunction with computational modelling, we atomically resolve crystallographic transformation modes for the annihilation of intragrain impurity nano-clusters and probe their impacts on optoelectronic properties. Such critical fundamental findings are translated for the device advancement. Adopting a scanning laser stimulus proven to heal intragrain impurity nano-clusters, we simultaneously boost the efficiency and stability of formamidinium-cesium perovskite solar cells, by virtual of improved optoelectronic properties and relaxed intra-crystal strain, respectively. This device engineering, inspired and guided by atomic-scale in situ microscopic imaging, presents a new prototype for solar cell advancement.

7.
Adv Mater ; 36(25): e2400138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38402444

RESUMO

Kesterites, Cu2ZnSn(SxSe1- x)4 (CZTSSe), solar cells suffer from severe open-circuit voltage (VOC) loss due to the numerous secondary phases and defects. The prevailing notion attributes this issue to Sn-loss during the selenization. However, this work unveils that, instead of Sn-loss, elemental inhomogeneity caused by Cu-directional diffusion toward Mo(S,Se)2 layer is the critical factor in the formation of secondary phases and defects. This diffusion decreases the Cu/(Zn+Sn) ratio to 53% at the bottom fine-grain layer, increasing the Sn-/Zn-related bulk defects. By suppressing the Cu-directional diffusion with a blocking layer, the crystal quality is effectively improved and the defect density is reduced, leading to a remarkable photovoltaic coversion efficiency (PCE) of 14.9% with a VOC of 576 mV and a certified efficiency of 14.6%. The findings provide insights into element inhomogeneity, holding significant potential to advance the development of CZTSSe solar cells.

8.
Adv Mater ; 36(16): e2310444, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38100278

RESUMO

The combination of 2D and 3D perovskites to passivate surfaces or interfaces with a high concentration of defects shows great promise for improving the efficiency of perovskite solar cells (PSCs). Constructing high-quality perovskite film systems by precisely modulating 2D perovskites with good morphologies and growth sites on 3D perovskite films remains a formidable challenge due to the complexity of spacer-engineered surface reactions. In this study, phase-pure 2D (HA)2(MA)n-1PbnI3n+1 perovskites with a controlled number of layers (n) are separated on a large scale and exploited as interface rivets to optimize 3D perovskite films, resulting in tunable film structural defects and grain boundaries. The optimized PSCs system benefits from a reduction in non-radiative recombination, resulting in improved optical performance, higher mobility, and lower trap density. The corresponding device achieves a champion power conversion efficiency (PCE) of more than 25%, especially for voltage (VOC) and fill factor (FF). The quality and uniformity of the perovskite films are further confirmed using large-area devices with an active area of 14 cm2, which exhibits a PCE of more than 21.24%. The high-quality thin-film system based on the 2D perovskites presented herein provides a new perspective for improving the efficiency and stability of PSCs.

9.
ACS Appl Mater Interfaces ; 16(20): 26460-26467, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38713066

RESUMO

Owing to the ionic bond nature of the Pb-I bond, the iodide at the interface of perovskite polycrystalline films was easily lost during the preparation process, resulting in the formation of a large number of iodine vacancy defects. The presence of iodine vacancy defects can cause nonradiative recombination, provide a pathway for iodide migration, and be harmful to the power conversion efficiency (PCE) and stability of organic-inorganic hybrid perovskite solar cells (HPSCs). Here, in order to increase the robustness of iodides at the interface, a strategy to introduce anion binding effects was developed to stabilize the perovskite films. It was demonstrated that the N,N'-diphenylurea (DPU), characterized by high anionic binding constants and a Y-shaped structure, provides a relatively strong hydrogen bond donor site to effectively reduce the iodine loss during film preparation and inhibits iodide migration in the device working condition. As expected, the reduced iodine loss considerably improves the quality of the perovskite films and suppresses nonradiative recombination. The performance of the device after DPU modification was significantly increased, with the PCE rising from 23.65 to 25.01% with huge stability enhancement as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA