Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(21): 6386-6394, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743576

RESUMO

Adhesion ability and interfacial thermal transfer capacity at soft/hard interfaces are of critical importance to a wide variety of applications, ranging from electronic packaging and soft electronics to batteries. However, these two properties are difficult to obtain simultaneously due to their conflicting nature at soft/hard interfaces. Herein, we report a polyurethane/silicon interface with both high adhesion energy (13535 J m-2) and low thermal interfacial resistance (0.89 × 10-6 m2 K W-1) by regulating hydrogen interactions at the interface. This is achieved by introducing a soybean-oil-based epoxy cross-linker, which can destroy the hydrogen bonds in polyurethane networks and meanwhile can promote the formation of hydrogen bonds at the polyurethane/silicon interface. This study provides a comprehensive understanding of enhancing adhesion energy and reducing interfacial thermal resistance at soft/hard interfaces, which offers a promising perspective to tailor interfacial properties in various material systems.

2.
Small ; 20(2): e2305090, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658523

RESUMO

The pursuit of enhancing the heat transfer performance of composite elastomers as the thermal interface materials (TIMs) is a compelling and timely endeavor, given the formidable challenges posed by interfacial thermal transport in the domains of energy science, electronic technology, etc. Despite the efficacy of phase change materials (PCMs) in enhancing composite elastomers' interfacial compatibility, thereby reducing contact thermal resistance for heat transfer improvement, their leakage post-transition has impeded the widespread adoption of this approach. Herein, a strategy is proposed for developing a solid-solid phase change composite elastomer by grafting alkene chains onto the crosslink network to eliminate the possibility of leakage. A series characterization suggest that the resulting material possesses a self-adjusting interfacial compatibility feature to help reduce contact thermal resistance for heat transfer facilitating. The investigations on adhesion strength and surface energy reveal that the presence of amorphous grafted alkane chains at the interface facilitates easier absorption onto the contacting solid surface, enhancing intermolecular interactions at the interface to promote across-boundary heat transfer. By integrating these findings with the thermal performance evaluation of composite elastomers using a real test vehicle, valuable insights are gained for the design of composite elastomers, establishing their suitability as TIMs in relevant fields.

3.
Small ; : e2402265, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757418

RESUMO

The emerging applications of thermally conductive elastomer composites in modern electronic devices for heat dissipation require them to maintain both high toughness and resilience under thermomechanical stresses. However, such a combination of thermal conductivity and desired mechanical characteristics is extremely challenging to achieve in elastomer composites. Here this long-standing mismatch is resolved via regulating interfacial structure and dynamics response. This regulation is realized both by tuning the molecular weight of the dangling chains in the polymer networks and by silane grafting of the fillers, thereby creating a broad dynamic-gradient interfacial region comprising of entanglements. These entanglements can provide the slipping topological constraint that allows for tension equalization between and along the chains, while also tightening into rigid knots to prevent chain disentanglement upon stretching. Combined with ultrahigh loading of aluminum-fillers (90 wt%), this design provides a low Young's modulus (350.0 kPa), high fracture toughness (831.5 J m-2), excellent resilience (79%) and enhanced thermal conductivity (3.20 W m-1 k-1). This work presents a generalizable preparation strategy toward engineering soft, tough, and resilient high-filled elastomer composites, suitable for complex environments, such as automotive electronics, and wearable devices.

4.
Environ Res ; 186: 109521, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335429

RESUMO

The high-level ammonium-nitrogen (NH4+-N) is a contaminant for aqueous environment but a potential hydrogen fuel. This study investigated an approach of increasing ammonia recovery via adding sodium sulfate of 0-1.5 M to prevent from nitrogen generation. The results of experiment tests, electrochemical analysis and MD simulation demonstrated that the added Na2SO4 assisted ammonium transport inhibited nitrogen gas generation in a certain concentration range. In electric double layer (EDL), with Na2SO4 concentration increasing, both the migration velocities of NH4+ and Na+ are accelerated for Na2SO4 of 0-0.25 M, whereas they are decelerated for concentrate Na2SO4 that 0.5 M). A thick layer formed by Na+ that imposed a fierce competitive adsorption blocked the migration of NH4+ and the transportation of electrons. The decrease of electrons and the accumulation of water molecules caused the potential drop in the EDL. 0.25 M Na2SO4 was the optimal concentration from the aspect of ion transports. The results obtained in this study can allow the manipulation of EDI capacity optimization.


Assuntos
Amônia , Compostos de Amônio , Amônia/análise , Compostos de Amônio/análise , Eletrodos , Nitrogênio/análise , Sulfatos , Águas Residuárias
5.
Nano Lett ; 17(6): 3902-3906, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28510441

RESUMO

We report for the first time the synthesis of large, free-standing, Mo2O2(µ-S)2(Et2dtc)2 (MoDTC) nanosheets (NSs), which exhibit an electron-beam induced crystalline-to-amorphous phase transition. Both electron beam ionization and femtosecond (fs) optical excitation induce the phase transition, which is size-, morphology-, and composition-preserving. Resulting NSs are the largest, free-standing regularly shaped two-dimensional amorphous nanostructures made to date. More importantly, amorphization is accompanied by dramatic changes to the NS electrical and optical response wherein resulting amorphous species exhibit room-temperature conductivities 5 orders of magnitude larger than those of their crystalline counterparts. This enhancement likely stems from the amorphization-induced formation of sulfur vacancy-related defects and is supported by temperature-dependent transport measurements, which reveal efficient variable range hopping. MoDTC NSs represent one instance of a broader class of transition metal carbamates likely having applications because of their intriguing electrical properties as well as demonstrated ability to toggle metal oxidation states.

6.
ACS Appl Mater Interfaces ; 13(37): 45050-45058, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34495646

RESUMO

Polymer-based thermal interface materials (TIMs) are indispensable for reducing the thermal contact resistance of high-power electronic devices. Owing to the low thermal conductivity of polymers, adding multiscale dispersed particles with high thermal conductivity is a common approach to enhance the effective thermal conductivity. However, optimizing multiscale particle matching, including particle size distribution and volume fraction, for improving the effective thermal conductivity has not been achieved. In this study, three kinds of filler-loaded samples were prepared, and the effective thermal conductivity and average particle size of the samples were tested. The finite element model (FEM) and the random thermal network model (RTNM) were applied to predict the effective thermal conductivity of TIMs. Compared with the FEM, the RTNM achieves higher accuracy with an error less than 5% and higher computational efficiency in predicting the effective thermal conductivity of TIMs. Combining the abovementioned advantages, we designed a set of procedures for an RTNM driven by the genetic algorithm (GA). The procedure can find multiscale particle-matching ways to achieve the maximum effective thermal conductivity under a given filler load. The results show that the samples with 40 vol %, 50 vol %, and 60 vol % filler loading have similar particle size distribution and volume fractions when the effective thermal conductivity reaches the highest. It should be emphasized that the optimized effective thermal conductivity can be improved obviously with the increase in the volume fraction of the filler loading. The high efficiency and accuracy of the procedure show great potential for the future design of high-efficiency TIMs.

7.
ACS Appl Mater Interfaces ; 11(51): 48525-48532, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31794181

RESUMO

Precise spatiotemporal control of surface bubble movement can benefit a wide range of applications like high-throughput drug screening, combinatorial material development, microfluidic logic, colloidal and molecular assembly, and so forth. In this work, we demonstrate that surface bubbles on a solid surface are directed by a laser to move at high speeds (>1.8 mm/s), and we elucidate the mechanism to be the depinning of the three-phase contact line (TPCL) by rapid plasmonic heating of nanoparticles (NPs) deposited in situ during bubble movement. On the basis of our observations, we deduce a stick-slip mechanism based on asymmetric fore-aft plasmonic heating: local evaporation at the front TPCL due to plasmonic heating depins and extends the front TPCL, followed by the advancement of the trailing TPCL to resume a spherical bubble shape to minimize surface energy. The continuous TPCL drying during bubble movement also enables well-defined contact line deposition of NP clusters along the moving path. Our finding is beneficial to various microfluidics and pattern writing applications.

8.
ACS Nano ; 13(2): 1097-1106, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30633498

RESUMO

Polymers with superior mechanical properties are desirable in many applications. In this work, polyethylene (PE) films reinforced with exfoliated thermally reduced graphene oxide (TrGO) fabricated using a roll-to-roll hot-drawing process are shown to have outstanding mechanical properties. The specific ultimate tensile strength and Young's modulus of PE/TrGO films increased monotonically with the drawing ratio and TrGO filler fraction, reaching up to 3.2 ± 0.5 and 109.3 ± 12.7 GPa, respectively, with a drawing ratio of 60× and a very low TrGO weight fraction of 1%. These values represent by far the highest reported to date for a polymer/graphene composite. Experimental characterizations indicate that as the polymer films are drawn, TrGO fillers are exfoliated, which is further confirmed by molecular dynamics (MD) simulations. Exfoliation increases the specific area of the TrGO fillers in contact with the PE matrix molecules. Molecular dynamics simulations show that the PE-TrGO interaction is stronger than the PE-PE intermolecular van der Waals interaction, which enhances load transfer from PE to TrGO and leverages the ultrahigh mechanical properties of TrGO.

9.
ACS Nano ; 11(6): 5510-5518, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28511003

RESUMO

The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation. Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency. Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide. Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor-liquid interface due to capillary effect. This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation. This strategy of functionalizing graphene to make it more hydrophilic can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.

10.
ACS Appl Mater Interfaces ; 8(48): 33326-33334, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934170

RESUMO

The nature of the bond is a dominant factor in determining the thermal transport across interfaces. In this paper, we study the role of the hydrogen bond in thermal transport across interfaces between hard and soft materials with different surface functionalizations around room temperature using molecular dynamics simulations. Gold (Au) is studied as the hard material, and four different types of organic liquids with different polarizations, including hexane (C5H11CH3), hexanamine (C6H13NH2), hexanol (C6H13OH), and hexanoic acid (C5H11COOH), are used to represent the soft materials. To study the hydrogen bonds at the Au/organic liquid interface, three types of thiol-terminated self-assembled monolayer (SAM) molecules, including 1-hexanethiol [HS(CH2)5CH3], 6-mercapto-1-hexanol [HS(CH2)6OH], and 6-mercaptohexanoic acid [HS(CH2)5COOH], are used to functionalize the Au surface. These SAM molecules form hydrogen bonds with the studied organic liquids with varying strengths, which are found to significantly improve efficient interfacial thermal transport. Detailed analyses on the molecular-level details reveal that such efficient thermal transport originates from the collaborative effects of the electrostatic and van der Waals portions in the hydrogen bonds. It is found that stronger hydrogen bonds will pull the organic molecules closer to the interface. This shorter intermolecular distance leads to increased interatomic forces across the interfaces, which result in larger interfacial heat flux and thus higher thermal conductance. These results can provide important insight into the design of hard/soft materials or structures for a wide range of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA