Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell Proteomics ; 19(12): 1936-1952, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32883801

RESUMO

Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.


Assuntos
Citrus/enzimologia , Citrus/microbiologia , Progressão da Doença , Peroxidases/metabolismo , Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/metabolismo , Proteômica , Serina Proteases/metabolismo , Citrus/efeitos dos fármacos , Citrus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Peroxidases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/microbiologia , Inibidores de Proteases/farmacologia , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Plant Physiol ; 184(2): 792-805, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32759268

RESUMO

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (Las), is one of the most destructive citrus diseases worldwide, yet how Las causes HLB is poorly understood. Here we show that a Las-secreted protein, SDE15 (CLIBASIA_04025), suppresses plant immunity and promotes Las multiplication. Transgenic expression of SDE15 in Duncan grapefruit (Citrus × paradisi) suppresses the hypersensitive response induced by Xanthomonas citri ssp. citri (Xcc) and reduces the expression of immunity-related genes. SDE15 also suppresses the hypersensitive response triggered by the Xanthomonas vesicatoria effector protein AvrBsT in Nicotiana benthamiana, suggesting that it may be a broad-spectrum suppressor of plant immunity. SDE15 interacts with the citrus protein CsACD2, a homolog of Arabidopsis (Arabidopsis thaliana) ACCELERATED CELL DEATH 2 (ACD2). SDE15 suppression of plant immunity is dependent on CsACD2, and overexpression of CsACD2 in citrus suppresses plant immunity and promotes Las multiplication, phenocopying overexpression of SDE15. Identification of CsACD2 as a susceptibility target has implications in genome editing for novel plant resistance against devastating HLB.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Arabidopsis/fisiologia , Proteínas de Bactérias/fisiologia , Citrus sinensis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Liberibacter/fisiologia , Oxirredutases/fisiologia , Proteínas de Bactérias/isolamento & purificação , Citrus sinensis/metabolismo , Imunidade Vegetal , Plantas Geneticamente Modificadas
3.
Phytopathology ; 111(7): 1122-1128, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33090080

RESUMO

'Candidatus Liberibacter asiaticus' (CLas) is the predominant causal agent of citrus huanglongbing, the most devastating citrus disease worldwide. CLas colonizes phloem tissue and causes phloem dysfunction. The pathogen population size in local tissues and in the whole plant is critical for the development of disease symptoms by determining the load of pathogenicity factors and metabolic burden to the host. However, the total population size of CLas in a whole plant and the ratio of CLas to citrus cells in local tissues have not been addressed previously. The total CLas population size for 2.5-year-old 'Valencia' sweet orange on 'Kuharske' citrange rootstock trees was quantified using quantitative PCR to be approximately 1.74 × 109 cells/tree, whereas 7- and 20-year-old sweet orange trees were estimated to be 4.3 × 1010 cells/tree, and 6.0 × 1010 cells/tree, respectively. The majority of CLas cells were distributed in leaf tissues (55.58%), followed by those in branch (36.78%), feeder root (4.75%), trunk (2.39%), and structural root (0.51%) tissues. The ratios of citrus cells to CLas cells for branch, leaf, trunk, feeder root, and structural root samples were within approximately 39 to 79, 44 to 124, 153 to 1,355, 191 to 1,054, and 561 to 3,760, respectively, representing the metabolic burden of CLas in different organs. It was estimated that the ratios of phloem cells to CLas cells for branch, leaf, trunk, feeder root, and structural root samples are approximately 0.39 to 0.79, 0.44 to 1.24, 1.53 to 13.55, 1.91 to 10.54, and 5.61 to 37.60, respectively. Approximately 0.01% of the total citrus phloem volume was estimated to be occupied by CLas, explaining the difficulty to observe CLas in most tissues under transmission electron microscopy. The CLas titer inside the leaf was estimated to be approximately 1.64 × 106 cells/leaf or 9.2 × 104 cells cm-2 in leaves, approximately 104 times less than that of typical apoplastic bacterial pathogens. This study provides quantitative estimates of phloem colonization by bacterial pathogens and furthers the understanding of the biology and virulence mechanisms of CLas.


Assuntos
Citrus , Rhizobiaceae , Liberibacter , Floema , Doenças das Plantas , Densidade Demográfica , Árvores
4.
Phytopathology ; 111(7): 1095-1103, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33267628

RESUMO

Streptomycin (STR) has been used to control citrus huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) via foliar spray. Here, we studied the residue dynamics of STR and its effect on CLas titers in planta applied by foliar spray and trunk injection of 3-year-old citrus trees that were naturally infected by CLas in the field. After foliar spray, STR levels in leaves peaked at 2 to 7 days postapplication (dpa) and gradually declined thereafter. The STR spray did not significantly affect CLas titers in leaves of treated plants as determined by quantitative PCR. After trunk injection, peak levels of STR were observed 7 to 14 dpa in the leaf and root tissues, and near-peak levels were sustained for another 14 days before significantly declining. At 12 months after injection, moderate to low or undetectable levels of STR were observed in the leaf, root, and fruit, depending on the doses of STR injected, with a residue level of 0.28 µg/g in harvested fruit at the highest injection concentration of 2.0 µg/tree. CLas titers in leaves were significantly reduced by trunk injection of STR at 1.0 or 2.0 g/tree, starting from 7 dpa and throughout the experimental period. The reduction of CLas titers was positively correlated with STR residue levels in leaves. The in planta minimum effective concentration of STR needed to suppress the CLas titer to an undetectable level (cycle threshold ≥36.0) was 1.92 µg/g fresh weight. Determination of the in planta minimum effective concentration of STR against CLas and its spatiotemporal residue levels in planta provides the guidance to use STR for HLB management.


Assuntos
Citrus , Rhizobiaceae , Liberibacter , Doenças das Plantas , Estreptomicina
5.
Mol Plant Microbe Interact ; 33(12): 1394-1404, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32986514

RESUMO

Sec-delivered effector 1 (SDE1) from the huanglongbing (HLB)-associated bacterium 'Candidatus Liberibacter asiaticus' was previously characterized as an inhibitor of defense-related, papain-like cysteine proteases in vitro and in planta. Here, we investigated the contributions of SDE1 to HLB progression. We found that SDE1 expression in the model plant Arabidopsis thaliana caused severe yellowing in mature leaves, reminiscent of both 'Ca. L. asiaticus' infection symptoms and accelerated leaf senescence. Induction of senescence signatures was also observed in the SDE1-expressing A. thaliana lines. These signatures were apparent in older leaves but not in seedlings, suggesting an age-associated effect. Furthermore, independent lines of transgenic Citrus paradisi (L.) Macfadyen (Duncan grapefruit) that express SDE1 exhibited hypersusceptibility to 'Ca. L. asiaticus'. Similar to A. thaliana, transgenic citrus expressing SDE1 showed altered expression of senescence-associated genes, but only after infection with 'Ca. L. asiaticus'. These findings suggest that SDE1 is a virulence factor that contributes to HLB progression, likely by inducing premature or accelerated senescence in citrus. This work provides new insight into HLB pathogenesis.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Citrus , Liberibacter , Doenças das Plantas , Arabidopsis/microbiologia , Citrus/microbiologia , Liberibacter/genética , Liberibacter/metabolismo , Liberibacter/patogenicidade , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32187998

RESUMO

Huanglongbing (HLB), a bacterial disease caused by Candidatus Liberibacter asiaticus (CLas), is a major threat to the citrus industry. In a previous study conducted by our laboratory, several citrus transgenic trees expressing the Arabidopsis thaliana NPR1 (AtNPR1) gene remained HLB-free when grown in a field site under high HLB disease pressure. To determine the molecular mechanisms behind AtNPR1-mediated tolerance to HLB, a transcriptome analysis was performed using AtNPR1 overexpressing transgenic trees and non-transgenic trees as control, from which we identified 57 differentially expressed genes (DEGs). Data mining revealed the enhanced transcription of genes encoding pathogen-associated molecular patterns (PAMPs), transcription factors, leucine-rich repeat receptor kinases (LRR-RKs), and putative ankyrin repeat-containing proteins. These proteins were highly upregulated in the AtNPR1 transgenic line compared to the control plant. Furthermore, analysis of protein-protein interactions indicated that AtNPR1 interacts with CsNPR3 and CsTGA5 in the nucleus. Our results suggest that AtNPR1 positively regulates the innate defense mechanisms in citrus thereby boosting resistance and effectively protecting the plant against HLB.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Citrus sinensis/genética , Resistência à Doença/genética , Resistência à Doença/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Citrus sinensis/imunologia , Citrus sinensis/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Imunidade Inata , Liberibacter , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Infertilidade das Plantas/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Fatores de Transcrição/metabolismo , Transcriptoma
7.
New Phytol ; 223(2): 828-838, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30919975

RESUMO

Plants depend on Resistance (R) genes, most of which encode nucleotide-binding site leucine-rich repeat (NLR) proteins, for pathogen race-specific disease resistance. However, only a few immediate downstream targets of R proteins have been characterized, and the signalling pathways for R-protein-induced immunity are largely unknown. In rice (Oryza sativa), NLR proteins serve as important immune receptors in the response to rice blast disease caused by the fungus Magnaporthe oryzae. We used site-directed mutagenesis to create an autoactive form of the NLR protein PID3 that confers blast resistance and used transgenic rice to test the resulting immunity and gene expression changes. We identified OsRac1, a known GTPase, as a signalling molecule in PID3-mediated blast resistance, implicating OsRac1 as a possible common factor downstream of rice NLR proteins. We also identified RAI1, a transcriptional activator, as a PID3 interactor required for PID3-mediated blast resistance and showed that RAI1 expression is induced by PID3 via a process mediated by OsRac1. This study describes a new signalling pathway for NLR protein-mediated blast resistance and shows that OsRac1 and RAI1 act together to play a critical role in this process.


Assuntos
Resistência à Doença , Nucleotídeos/metabolismo , Oryza/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Sítios de Ligação , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Repetições Ricas em Leucina , Oryza/genética , Oryza/imunologia , Oryza/metabolismo , Doenças das Plantas/genética , Imunidade Vegetal , Proteínas de Plantas/genética , Ligação Proteica , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Phytopathology ; 109(12): 2046-2054, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31369360

RESUMO

Huanglongbing (HLB) or greening currently is the most devastating citrus disease worldwide. The fastidious phloem-colonizing bacterium 'Candidatus Liberibacter asiaticus' (CLas) is the causal agent of citrus HLB in Florida. Bactericides containing the active ingredient oxytetracycline (OTC) have been used in foliar spray to control citrus HLB in Florida since 2016. However, the minimum concentration of OTC required to suppress CLas in planta remains unknown. We developed a new method for evaluating the effects of OTC treatment on CLas titers in infected plants and determined the relationship between OTC residue levels and control levels achieved for CLas using mathematical modeling in greenhouse and field experiments. In both greenhouse and field, OTC spray did not reduce the titers of CLas, and it produced undetectable or mild levels of OTC residue in leaves within 7 days post-application (DPA). In greenhouse, OTC injection at 0.05 g per tree decreased CLas titers to an undetectable level (cycle threshold value ≥ 36.0) from 7 to 30 DPA and produced a residue level of OTC at 0.68 to 0.73 µg/g of fresh tissue over this period. In the field, OTC injection at 0.50 g per tree resulted in the decline of CLas titers by 1.52 log reduction from 14 to 60 DPA, with residue levels of OTC at 0.27 to 0.33 µg/g of fresh tissue. In both trials, a first-order compart model of OTC residue dynamics in leaves of trunk-injected trees was specified for estimating the retention of effective concentrations. Furthermore, nonlinear modeling revealed significant positive correlations between OTC residue levels in leaves and the control levels for CLas achieved. The results suggested that the minimum concentrations of OTC required to suppress CLas populations in planta to below the detection limit are 0.68 and 0.86 µg/g and that the minimum concentrations of OTC required for initial inhibition of CLas growth in planta are ∼0.17 and ∼0.215 µg/g in leaf tissues under greenhouse and field conditions, respectively. This finding highlights that a minimum concentration of OTC should be guaranteed to be delivered to target CLas in infected plants for effective control of citrus HLB.


Assuntos
Citrus , Oxitetraciclina , Rhizobiaceae , Citrus/microbiologia , Florida , Testes de Sensibilidade Microbiana , Oxitetraciclina/farmacologia , Doenças das Plantas/microbiologia , Rhizobiaceae/efeitos dos fármacos
9.
Phytopathology ; 109(4): 582-592, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30418089

RESUMO

Citrus Huanglongbing (HLB), also known as greening, is a destructive disease caused by the fastidious, phloem-colonizing bacteria Candidatus Liberibacter spp.; 'Ca. Liberibacter asiaticus' (Las) is the most prevalent of the species causing HLB. The Asian citrus psyllid (ACP, Diaphorina citri) transmits Las. HLB is threatening citrus production worldwide, and there is no cure for infected trees. Management strategies targeting diseased trees at different stages of colonization by Las are needed for sustainable citrus production in HLB-endemic regions. We evaluated the effect of the combinations of plant defense elicitors, nitrogen (N) fertilizer, and compost on mildly diseased trees. We tested thermotherapy on severely diseased trees and assessed tree protectors to prevent feeding by ACP, thus preventing Las from being transmitted to new plantings that replaced HLB-moribund trees. After four applications over two consecutive growing seasons we found that the combination of compost, urea, and plant defense elicitors ß-aminobutyric acid, plus ascorbic acid and potassium phosphite with or without salicylic acid, slowed down the progression of HLB and reduced disease severity by approximately 18%, compared with the untreated control. Our data showed no decline in fruit yield, indeed treatment resulted in a higher yield compared with the untreated control. Thermotherapy treatment (55°C for 2 min) exhibited a suppressive effect on growth of Las and progress of HLB in severely diseased trees for 2 to 3 months after treatment. The tree protectors prevented feeding by ACP, and therefore young replant trees remained healthy and free from infection by Las over the 2-year duration of the experiment. Taken together, these results may contribute to a basis for developing a targeted approach to control HLB based on stage of host colonization, application of plant defense elicitors, N fertilizer, compost, thermotherapy, and tree protectors. There is potential to implement these strategies in conjunction with other disease control measures to contribute to sustainable citrus production in HLB-endemic regions.


Assuntos
Citrus , Hemípteros , Temperatura Alta , Imunidade Vegetal , Equipamentos de Proteção , Rhizobiaceae , Animais , Citrus/microbiologia , Citrus/parasitologia , Fertilizantes , Temperatura Alta/uso terapêutico , Doenças das Plantas , Imunidade Vegetal/efeitos dos fármacos , Equipamentos de Proteção/microbiologia , Equipamentos de Proteção/parasitologia , Rhizobiaceae/crescimento & desenvolvimento , Rhizobiaceae/efeitos da radiação , Árvores
10.
Mol Plant Microbe Interact ; 30(8): 620-630, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28488467

RESUMO

Pathogens from the fastidious, phloem-restricted 'Candidatus Liberibacter' species cause the devastating Huanglongbing (HLB) disease in citrus worldwide and cause diseases on many solanaceous crops and plants in the Apiaceae family. However, little is known about the pathogenic mechanisms due to the difficulty in culturing the corresponding 'Ca. Liberibacter' species. Here, we report that the citrus HLB pathogen 'Ca. L. asiaticus' uses an active salicylate hydroxylase SahA to degrade salicylic acid (SA) and suppress plant defenses. Purified SahA protein displays strong enzymatic activity to degrade SA and its derivatives. Overexpression of SahA in transgenic tobacco plants abolishes SA accumulation and hypersensitive response (HR) induced by nonhost pathogen infection. By degrading SA, 'Ca. L. asiaticus' not only enhances the susceptibility of citrus plants to both nonpathogenic and pathogenic Xanthomonas citri but also attenuates the responses of citrus plants to exogenous SA. In addition, foliar spraying of 2,1,3-benzothiadiazole and 2,6-dichloroisonicotinic acid, SA functional analogs not degradable by SahA, displays comparable (and even better) effectiveness with SA in suppressing 'Ca. L. asiaticus' population growth and HLB disease progression in infected citrus trees under field conditions. This study demonstrates one or more pathogens suppress plant defenses by degrading SA and establish clues for developing novel SA derivatives-based management approaches to control the associated plant diseases.


Assuntos
Citrus/imunologia , Citrus/microbiologia , Oxigenases de Função Mista/metabolismo , Rhizobiaceae/metabolismo , Ácido Salicílico/metabolismo , Sequência de Aminoácidos , Animais , Citrus/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Insetos/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Nicotiana/genética , Regulação para Cima/genética
11.
BMC Plant Biol ; 15: 49, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25849162

RESUMO

BACKGROUND: Rice blast disease is one of the most destructive diseases of rice worldwide. We previously cloned the rice blast resistance gene Pid2, which encodes a transmembrane receptor-like kinase containing an extracellular B-lectin domain and an intracellular serine/threonine kinase domain. However, little is known about Pid2-mediated signaling. RESULTS: Here we report the functional characterization of the U-box/ARM repeat protein OsPUB15 as one of the PID2-binding proteins. We found that OsPUB15 physically interacted with the kinase domain of PID2 (PID2K) in vitro and in vivo and the ARM repeat domain of OsPUB15 was essential for the interaction. In vitro biochemical assays indicated that PID2K possessed kinase activity and was able to phosphorylate OsPUB15. We also found that the phosphorylated form of OsPUB15 possessed E3 ligase activity. Expression pattern analyses revealed that OsPUB15 was constitutively expressed and its encoded protein OsPUB15 was localized in cytosol. Transgenic rice plants over-expressing OsPUB15 at early stage displayed cell death lesions spontaneously in association with a constitutive activation of plant basal defense responses, including excessive accumulation of hydrogen peroxide, up-regulated expression of pathogenesis-related genes and enhanced resistance to blast strains. We also observed that, along with plant growth, the cell death lesions kept spreading over the whole seedlings quickly resulting in a seedling lethal phenotype. CONCLUSIONS: These results reveal that the E3 ligase OsPUB15 interacts directly with the receptor-like kinase PID2 and regulates plant cell death and blast disease resistance.


Assuntos
Morte Celular , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Sequência de Aminoácidos , Resistência à Doença , Imunidade Inata , Magnaporthe/fisiologia , Oryza/enzimologia , Oryza/genética , Oryza/imunologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/fisiologia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
12.
Phytopathology ; 103(6): 594-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23384860

RESUMO

The rice blast resistance gene Pid3 encodes a nucleotide-binding-site leucine-rich repeat (NBS-LRR) protein. This gene was cloned from the rice 'Digu' (indica) by performing a genome-wide comparison of the NBS-LRR gene family between two genome-sequenced varieties, '9311' (indica) and 'Nipponbare' (japonica). In this study, we performed functional analysis of Pid3-A4, an ortholog of Pid3 revealed by allele mining in the common wild rice A4 (Oryza rufipogon). The predicted protein encoded by Pid3-A4 shares 99.03% sequence identity with Pid3, with only nine amino-acid substitutions. In wild rice plants, Pid3-A4 is constitutively expressed, and its expression is not induced by Magnaporthe oryzae isolate Zhong-10-8-14 infection. Importantly, in transgenic plants, Pid3-A4, as compared with Pid3, displays a distinct resistance spectrum to a set of M. oryzae isolates, including those that prevail in the rice fields of Sichuan Province. Therefore, Pid3-A4 should be quite useful for the breeding of rice blast resistance, especially in southwestern China.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Magnaporthe/fisiologia , Oryza/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Alelos , Animais , Testes Genéticos , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética
13.
Nat Commun ; 13(1): 529, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082290

RESUMO

Huanglongbing (HLB) is a devastating disease of citrus, caused by the phloem-colonizing bacterium Candidatus Liberibacter asiaticus (CLas). Here, we present evidence that HLB is an immune-mediated disease. We show that CLas infection of Citrus sinensis stimulates systemic and chronic immune responses in phloem tissue, including callose deposition, production of reactive oxygen species (ROS) such as H2O2, and induction of immunity-related genes. The infection also upregulates genes encoding ROS-producing NADPH oxidases, and downregulates antioxidant enzyme genes, supporting that CLas causes oxidative stress. CLas-triggered ROS production localizes in phloem-enriched bark tissue and is followed by systemic cell death of companion and sieve element cells. Inhibition of ROS levels in CLas-positive stems by NADPH oxidase inhibitor diphenyleneiodonium (DPI) indicates that NADPH oxidases contribute to CLas-triggered ROS production. To investigate potential treatments, we show that addition of the growth hormone gibberellin (known to have immunoregulatory activities) upregulates genes encoding H2O2-scavenging enzymes and downregulates NADPH oxidases. Furthermore, foliar spray of HLB-affected citrus with gibberellin or antioxidants (uric acid, rutin) reduces H2O2 concentrations and cell death in phloem tissues and reduces HLB symptoms. Thus, our results indicate that HLB is an immune-mediated disease that can be mitigated with antioxidants and gibberellin.


Assuntos
Antioxidantes/farmacologia , Citrus/imunologia , Giberelinas/farmacologia , Doenças do Sistema Imunitário , Doenças das Plantas/imunologia , Antioxidantes/metabolismo , Bactérias , Morte Celular , Citrus/microbiologia , Giberelinas/metabolismo , Glucanos , Interações Hospedeiro-Patógeno/imunologia , Peróxido de Hidrogênio/metabolismo , Liberibacter , Floema , Doenças das Plantas/microbiologia , Virulência
14.
Mol Plant Pathol ; 21(1): 109-123, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721403

RESUMO

Citrus huanglongbing (HLB) is the most devastating citrus disease worldwide. 'Candidatus Liberibacter asiaticus' (Las) is the most prevalent HLB causal agent that is yet to be cultured. Here, we analysed the flagellar genes of Las and Rhizobiaceae and observed two characteristics unique to the flagellar proteins of Las: (i) a shorter primary structure of the rod capping protein FlgJ than other Rhizobiaceae bacteria and (ii) Las contains only one flagellin-encoding gene flaA (CLIBASIA_02090), whereas other Rhizobiaceae species carry at least three flagellin-encoding genes. Only flgJAtu but not flgJLas restored the swimming motility of Agrobacterium tumefaciens flgJ mutant. Pull-down assays demonstrated that FlgJLas interacts with FlgB but not with FliE. Ectopic expression of flaALas in A. tumefaciens mutants restored the swimming motility of ∆flaA mutant and ∆flaAD mutant, but not that of the null mutant ∆flaABCD. No flagellum was observed for Las in citrus and dodder. The expression of flagellar genes was higher in psyllids than in planta. In addition, western blotting using flagellin-specific antibody indicates that Las expresses flagellin protein in psyllids, but not in planta. The flagellar features of Las in planta suggest that Las movement in the phloem is not mediated by flagella. We also characterized the movement of Las after psyllid transmission into young flush. Our data support a model that Las remains inside young flush after psyllid transmission and before the flush matures. The delayed movement of Las out of young flush after psyllid transmission provides opportunities for targeted treatment of young flush for HLB control.


Assuntos
Proteínas de Bactérias/genética , Citrus paradisi/microbiologia , Flagelos/genética , Liberibacter/genética , Agrobacterium tumefaciens/genética , Animais , Proteínas de Bactérias/fisiologia , Flagelos/fisiologia , Flagelos/ultraestrutura , Genes Bacterianos , Hemípteros/microbiologia , Liberibacter/fisiologia , Liberibacter/ultraestrutura , Rhizobiaceae/genética
15.
Mol Plant Pathol ; 21(5): 716-731, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32108417

RESUMO

'Candidatus Liberibacter' species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from 'Candidatus Liberibacter asiaticus' (Las). In order to gain greater insight into 'Ca. Liberibacter' biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse 'Ca. Liberibacter' species, including those that can infect citrus. Our phylogenetic analysis differentiates 'Ca. Liberibacter' species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic 'Ca. Liberibacter' species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of 'Ca. Liberibacter' species, the introduction of Las in the United States and identifies promising Las targets for disease management.


Assuntos
Citrus/microbiologia , Estudo de Associação Genômica Ampla/métodos , Doenças das Plantas/microbiologia , Filogenia , Rhizobiaceae
16.
Mol Plant Pathol ; 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461671

RESUMO

Xanthomonas citri ssp. citri (Xcc) is an important plant-pathogenic bacterium that causes citrus canker disease worldwide. PthA, a transcriptional activator-like (TAL) effector, directs the expression of the canker susceptibility gene CsLOB1. Here, we report our recent progress in the functional characterization of CsLOB1. Subcellular localization analysis of CsLOB1 protein in citrus protoplast revealed that CsLOB1 is primarily localized in the nucleus. We showed that CsLOB1 expression driven by dexamethasone (DEX) in CsLOB1-GR transgenic plants is associated with pustule formation following treatment with DEX. Pustule formation was not observed in DEX-treated wild-type plants and in non-treated CsLOB1-GR transgenic plants. Water soaking is typically associated with symptoms of citrus canker. Weaker water soaking was observed with pustule formation in CsLOB1-GR transgenic plants following DEX treatment. When CsLOB1-GR-transgenic Duncan grapefruit leaves were inoculated with Xcc306ΔpthA4 and treated with DEX, typical canker symptoms, including hypertrophy, hyperplasia and water soaking symptoms, were observed on DEX-treated transgenic plant leaves, but not on mock-treated plants. Twelve citrus genes that are induced by PthA4 are also stimulated by the DEX-induced expression of CsLOB1. As CsLOB1 acts as a transcriptional factor, we identified putative targets of CsLOB1 via bioinformatic and electrophoretic mobility shift assays. Cs2g20600, which encodes a zinc finger C3HC4-type RING finger protein, has been identified to be a direct target of CsLOB1. This study advances our understanding of the function of CsLOB1 and the molecular mechanism of how Xcc causes canker symptoms via CsLOB1.

17.
Nat Commun ; 9(1): 1718, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712915

RESUMO

The citrus industry is facing an unprecedented challenge from Huanglongbing (HLB). All cultivars can be affected by the HLB-associated bacterium 'Candidatus Liberibacter asiaticus' (CLas) and there is no known resistance. Insight into HLB pathogenesis is urgently needed in order to develop effective management strategies. Here, we use Sec-delivered effector 1 (SDE1), which is conserved in all CLas isolates, as a molecular probe to understand CLas virulence. We show that SDE1 directly interacts with citrus papain-like cysteine proteases (PLCPs) and inhibits protease activity. PLCPs are defense-inducible and exhibit increased protein accumulation in CLas-infected trees, suggesting a role in citrus defense responses. We analyzed PLCP activity in field samples, revealing specific members that increase in abundance but remain unchanged in activity during infection. SDE1-expressing transgenic citrus also exhibit reduced PLCP activity. These data demonstrate that SDE1 inhibits citrus PLCPs, which are immune-related proteases that enhance defense responses in plants.


Assuntos
Citrus/microbiologia , Cisteína Proteases/genética , Inibidores de Cisteína Proteinase/metabolismo , Evasão da Resposta Imune , Doenças das Plantas/microbiologia , Proteínas de Plantas/antagonistas & inibidores , Rhizobiaceae/patogenicidade , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Citrus/classificação , Citrus/genética , Citrus/imunologia , Cisteína Proteases/imunologia , Inibidores de Cisteína Proteinase/química , Regulação da Expressão Gênica , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Rhizobiaceae/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
18.
Front Microbiol ; 8: 2041, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29403441

RESUMO

The citrus industry is facing an unprecedented crisis due to Huanglongbing (HLB, aka citrus greening disease), a bacterial disease associated with the pathogen Candidatus Liberibacter asiaticus (CLas) that affects all commercial varieties. Transmitted by the Asian citrus psyllid (ACP), CLas colonizes citrus phloem, leading to reduced yield and fruit quality, and eventually tree decline and death. Since adequate curative measures are not available, a key step in HLB management is to restrict the spread of the disease by identifying infected trees and removing them in a timely manner. However, uneven distribution of CLas cells in infected trees and the long latency for disease symptom development makes sampling of trees for CLas detection challenging. Here, we report that a CLas secreted protein can be used as a biomarker for detecting HLB infected citrus. Proteins secreted from CLas cells can presumably move along the phloem, beyond the site of ACP inoculation and CLas colonized plant cells, thereby increasing the chance of detecting infected trees. We generated a polyclonal antibody that effectively binds to the secreted protein and developed serological assays that can successfully detect CLas infection. This work demonstrates that antibody-based diagnosis using a CLas secreted protein as the detection marker for infected trees offers a high-throughput and economic approach that complements the approved quantitative polymerase chain reaction-based methods to enhance HLB management programs.

19.
Mol Plant Pathol ; 17(8): 1211-22, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26679839

RESUMO

Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) constitutes the first line of plant inducible immunity. As an important step of plant colonization, phytopathogens have to suppress PTI, and secreted effectors are therefore co-evolved and deployed. In this study, we characterized the function of MoSec62 of Magnaporthe oryzae, the causal agent of the destructive rice blast. MoSec62 encodes a homologue of Sec62p, a yeast endoplasmic reticulum (ER) membrane transporter for precursors of secretory proteins. We showed that a T-DNA insertion into the promoter region of MoSec62, causing a disturbance to the up-regulation of MoSec62 expression during blast invasion, resulted in a complete loss of blast virulence of the mutant, M1575. Both 3,3'-diaminobenzidine (DAB) staining of the infected rice leaves and expression analysis revealed that the infectious attempt by the mutant led to strong defence responses of rice. Consistently, in transcriptomic analysis of rice leaves subject to blast inoculation, a battery of defence responses was found to be induced exclusively on M1575 challenge. For further exploration, we tested the pathogenicity on a highly susceptible rice variety and detected the accumulation of Slp1, a known PTI suppressor. Both results suggested that the mutant most likely failed to overcome rice PTI. In addition, we showed that MoSec62 was able to rescue the thermosensitivity of a yeast Δsec62, and the MoSec62-GFP fusion was co-localized to the ER membrane, both suggesting the conservation of Sec62 homologues. In conclusion, our data indicate that MoSec62, probably as an ER membrane transporter, plays an essential role in antagonizing rice defence at the early stages of blast invasion.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Membranas Intracelulares/metabolismo , Magnaporthe/patogenicidade , Oryza/imunologia , Oryza/microbiologia , Imunidade Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/imunologia , Magnaporthe/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/metabolismo , Mutação/genética , Oryza/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Resposta a Proteínas não Dobradas/genética
20.
PLoS One ; 9(3): e93275, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24681716

RESUMO

Twenty-six orthologs of the rice blast resistance gene Pid3 from cultivated varieties and wild rice accessions distributed in different areas were cloned by allele mining. Sequence analysis showed that while each of the orthologous genes from indica varieties and most wild accessions encodes a complete NBS-LRR protein, each of the proteins encoded by those from japonica varieties and few wild rice accessions presents a premature termination. Eleven of the 26 orthologs were selected for blast resistance testing by transforming into the blast susceptible rice variety TP309, respectively. Inoculation of 23 M. oryzae strains collected from diverse regions of China to the respective transgenic plants revealed that 6 Pid3 orthologs showed susceptible to all the tested strains, while the other 5 orthologs showed differential resistance spectra in a gradually spectrum-widen order as Pid3-W3, Pid3-W4, Pid3-I3, Pid3-W5 and Pid3-I1. Amino acid sequences alignment of these orthologs indicated that the sequence diversities between the blast resistance orthologs were mostly located in the LRR domain such as the substitutions of Q694H,D856H,Q896R,D899E etc. However, the differences between the resistance orthologs and the susceptible ones were mostly located in the NBS domain. The present experiments provide an example of that the ortholog evaluation of plant R genes could be an efficient way to expand the rice blast resistance and some other plant disease resistance as well for breeding.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Magnaporthe/genética , Oryza/genética , Proteínas de Plantas/genética , Alelos , Sequência de Aminoácidos , Cruzamento/métodos , China , Filogenia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA