Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 87(2): 1019-1031, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34978817

RESUMO

In a recent report on the synthetic approach to the novel substance class of 1-alkylidene/arylidene-1,2,4-triazolinium salts, a reaction mechanism suggesting a regioselective outcome was proposed. This hypothesis was tested via a combined NMR and density functional theory (DFT) approach. To this end, three experiments with 13C-labeled carbonyl reactants were monitored in situ by solution-state NMR. In one experiment, an intermediate as described in the former mechanistic proposal was observed. However, incorporation of 13C isotope labels into multiple sites of the heterocycle could not be reconciled with the "regioselective mechanism". It was found that an unproductive reaction pathway can lead to 13C scrambling, along with metathetical carbonyl exchange. According to DFT calculations, the concurring reaction pathways are connected via a thermodynamically controlled cyclic 1,3-oxazetidine intermediate. The obtained insights were applied in a synthetic study including aliphatic ketones and para-substituted benzaldehydes. The mechanistic peculiarities set the potential synthetic scope of the novel reaction type.

2.
Faraday Discuss ; 215(0): 141-161, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-30942209

RESUMO

Inspired by natural photosynthesis, features such as proton relays have been integrated into water reduction catalysts (WRC) for effective production of hydrogen. Research by DuBois et al. showed the crucial influence of these relays, largely in the form of pendant amine functions. In this work catalysts are presented containing innovative diphosphinoamine ligands: [M(ii)Cl2(PNP-C1)], [M(ii)(MeCN)2(PNP-C1)]2+, [M(ii)(PNP-C1)2]2+, and [M(ii)Cl(PNP-C2)]+ (M = Pt2+, Pd2+, Ni2+, Co2+; PNP-C1 = N,N-bis{(di(2-methoxyphenyl)phosphino)methyl}-N-alkylamine, PNP-C2 = N,N-bis{(di(2-methoxyphenyl)phosphino)ethyl}-N-alkylamine and alkyl = Me, Et, iso-Pr, Bz). Synthetic strategies and detailed characterisation are covered, including 1H-, 13C-, and 31P-NMR analysis, mass spectroscopy and single crystal X-ray diffractometry (XRD). The catalytic properties have been explored by changing the pendant amines and auxiliary methoxy coordination sites, as well as enlarging the ligand backbone. Moreover, confirmed by density functional theory (DFT) calculations based on XRD data in vacuo and solvent environment, two very different catalytic cycles are proposed. PNP-C1 shows a classical proton relay, whereas PNP-C2 allows an additional coordination of nitrogen, acting optionally like a pincer. Through new insights into efficiency and stability-increasing influences of proton relays in general, their number per metal centre, an enlarged ligand backbone and the use of solvato instead of halogenido complexes, substantial improvements have been made in catalytic performance over the DuBois et al. catalysts and recently self-made WRCs. The turnover number (TON) related to the single site of cost-efficient nickel WRCs is increased from 11.4 to 637, whereas a corresponding palladium catalyst gives TON as high as 2289.

3.
Eur J Inorg Chem ; 2018(46): 4962-4971, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31007575

RESUMO

The new bis(bidentate) tetraphosphane cis,trans,cis-1,2,3,4-tetrakis(diphenylphosphanyl)buta-1,3-diene (dppbd) (7) was obtained by applying a photochemical synthetic protocol. The key step of the photochemical reaction consisted of an intramolecular [2+2] cycloaddition involving a C-C double and triple bond of the Pt-dimer species of the formula [Pt2Cl4(dppa)(trans-dppen)] (2) {dppa = 1,2-bis(diphenylphosphanyl)acetylene and dppen = 1,2-bis(diphenylphosphanyl)ethene} leading to [Pt2Cl4(dppbd)] (5). The asymmetrically bridged precursor complex 2 was obtained by combinatorial chemistry. Single crystal X-ray structure analyses of 2 and 5 proved that the intramolecular photochemical reaction occurred. Cyanolysis of 5 gave 7, which was oxidized to dppbdO4 (8). Compounds 7, 8, and the PdII dimer complex [Pd2Cl4(dppbd)] (9) were characterized in the solid state by a single-crystal X-ray structure analysis. Interesting photophysial properties emerged from the UV/Vis spectra acquired for 7 and the dimer Os complexes meso-Δ,Λ/Λ,Δ-[Os2(bpy)4(dppbd)](PF6)4 (10) and rac-Δ,Δ/Λ,Λ-[Os2(bpy)4(dppbd)](PF6)4 (11).

4.
Angew Chem Int Ed Engl ; 57(35): 11451-11455, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29989659

RESUMO

Explorative solid-state chemistry led to the discovery of the two new compounds Ga5 B12 O25 (OH) and In5 B12 O25 (OH). Extreme synthetic conditions within the range of 12 GPa and a temperature of 1450 °C realized in a Walker-type multianvil apparatus resulted in the formation of an unprecedented tetragonal structure with the exclusive presence of condensed BO4 tetrahedra, forming cuboctahedral cavities. Doping of these cavities with Eu3+ in In5 B12 O25 (OH) yielded in an orange-red luminescence. Photocatalytic tests of In5 B12 O25 (OH) revealed a hydrogen production rate comparable to TiO2 but completely co-catalyst free.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA