RESUMO
Molecular diagnostics moves more into focus as technology advances. In patients with myeloproliferative neoplasms (MPN), identification and monitoring of the driver mutations have become an integral part of diagnosis and monitoring of the disease. In some patients, none of the known driver mutations (JAK2V617F, CALR, MPL) is found, and they are termed "triple negative" (TN). Also, whole-blood variant allele frequency (VAF) of driver mutations may not adequately reflect the VAF in the stem cells driving the disease. We reasoned that colony forming unit (CFU) assay-derived clonogenic cells may be better suited than next-generation sequencing (NGS) of whole blood to detect driver mutations in TN patients and to provide a VAF of disease-driving cells. We have included 59 patients carrying the most common driver mutations in the establishment or our model. Interestingly, cloning efficiency correlated with whole blood VAF (p = 0.0048), suggesting that the number of disease-driving cells correlated with VAF. Furthermore, the clonogenic VAF correlated significantly with the NGS VAF (p < 0.0001). This correlation was lost in patients with an NGS VAF <15%. Further analysis showed that in patients with a VAF <15% by NGS, clonogenic VAF was higher than NGS VAF (p = 0.003), suggesting an enrichment of low numbers of disease-driving cells in CFU assays. However, our approach did not enhance the identification of driver mutations in 5 TN patients. A significant correlation of lactate dehydrogenase (LDH) serum levels with both CFU- and NGS-derived VAF was found. Our results demonstrate that enrichment for clonogenic cells can improve the detection of MPN driver mutations in patients with low VAF and that LDH levels correlate with VAF.
Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Calreticulina/genética , Calreticulina/metabolismo , Frequência do Gene , Mutação , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genéticaRESUMO
Malaria is one of the deadliest tropical diseases, especially causing havoc in children under the age of five in Africa. Although the disease is treatable, the rapid development of drug resistant parasites against frontline drugs requires the search for novel antimalarials. In this study, we tested a series of organosulfur compounds from our internal library for their antiplasmodial effect against Plasmodium falciparum asexual and sexual blood stages. Some active compounds were also obtained in enantiomerically pure form and tested individually against asexual blood stages of the parasite to compare their activity. Out of the 23 tested compounds, 7 compounds (1, 2, 5, 9, 15, 16, and 17) exhibited high antimalarial activity, with IC50 values in the range from 2.2 ± 0.64 to 5.2 ± 1.95 µM, while the other compounds showed moderate to very low activity. The most active compounds also exhibited high activity against the chloroquine-resistant strain, reduced gametocyte development and were not toxic to non-infected red blood cells and Hela cells, as well as the hematopoietic HEL cell line at concentrations below 50 µM. To determine if the enantiomers of the active compounds display different antimalarial activity, enantiomers of two of the active compounds were separated and their antimalarial activity compared. The results show a higher activity of the (-) enantiomers as compared to their (+) counterparts. Our combined data indicate that organosulfur compounds could be exploited as antimalarial drugs and enantiomers of the active compounds may represent a good starting point for the design of novel drugs to target malaria.
RESUMO
The receptor tyrosine kinase c-KIT (CD117) has a key role in hematopoiesis and is a marker for endothelial and cardiac progenitor cells. In vivo, deficiency of c-KIT is lethal and therefore using CRISPR/Cas9 editing we generated heterozygous and homozygous c-KIT knockout human embryonic stem cell (ES cell) lines. The c-KIT knockout left ES cell pluripotency unaffected as shown by immunofluorescence and trilineage differentiation potential. Heterozygous and homozygous c-KIT knockouts showed complete loss of exon 17, resulting in ablation of c-KIT protein from the cell surface. c-KIT knockout ES cells provide a valuable tool for further investigating c-KIT biology.
Assuntos
Células-Tronco Embrionárias Humanas , Sistemas CRISPR-Cas/genética , Linhagem Celular , Heterozigoto , Homozigoto , Células-Tronco Embrionárias Humanas/metabolismo , HumanosRESUMO
Calreticulin (CALR) mutations are driver mutations in myeloproliferative neoplasms (MPNs), leading to activation of the thrombopoietin receptor and causing abnormal megakaryopoiesis. Here, we generated patient-derived CALRins5- or CALRdel52-positive induced pluripotent stem cells (iPSCs) to establish an MPN disease model for molecular and mechanistic studies. We demonstrated myeloperoxidase deficiency in granulocytic cells derived from homozygous CALR mutant iPSCs, rescued by repairing the mutation using CRISPR/Cas9. iPSC-derived megakaryocytes showed characteristics of primary megakaryocytes such as formation of demarcation membrane system and cytoplasmic pro-platelet protrusions. Importantly, CALR mutations led to enhanced megakaryopoiesis and accelerated megakaryocytic development in a thrombopoietin-independent manner. Mechanistically, our study identified differentially regulated pathways in mutated versus unmutated megakaryocytes, such as hypoxia signaling, which represents a potential target for therapeutic intervention. Altogether, we demonstrate key aspects of mutated CALR-driven pathogenesis dependent on its zygosity, and found novel therapeutic targets, making our model a valuable tool for clinical drug screening in MPNs.
Assuntos
Calreticulina/genética , Mutação da Fase de Leitura , Células-Tronco Pluripotentes Induzidas/metabolismo , Megacariócitos/metabolismo , Transtornos Mieloproliferativos/genética , Calreticulina/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Humanos , Megacariócitos/ultraestrutura , Microscopia Eletrônica de Transmissão , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trombopoese/genéticaRESUMO
Structural analogues of PFI-1 varying at the sulfur core were prepared, and their activities as BET inhibitors in myeloid cell lines and primary cells from patients with acute myeloid leukemia were studied. Docking calculations followed by molecular dynamics simulations revealed the binding mode of the newly prepared inhibitors, suggesting explanations for the observed high enantiospecificity of the inhibitory activity.