Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255921

RESUMO

5-Deazaflavins are analogs of naturally occurring flavin cofactors. They serve as substitutes for natural flavin cofactors to investigate and modify the reaction pathways of flavoproteins. Demethylated 5-deazaflavins are potential candidates for artificial cofactors, allowing us to fine-tune the reaction kinetics and absorption characteristics of flavoproteins. In this contribution, demethylated 5-deazariboflavin radicals are investigated (1) to assess the influence of the methyl groups on the electronic structure of the 5-deazaflavin radical and (2) to explore their photophysical properties with regard to their potential as artificial cofactors. We determined the proton hyperfine structure of demethylated 5-deazariboflavins using photochemically induced dynamic nuclear polarization (photo-CIDNP) spectroscopy, as well as density functional theory (DFT). To provide context, we compare our findings to a study of flavin mononucleotide (FMN) derivatives. We found a significant influence of the methylation pattern on the absorption properties, as well as on the proton hyperfine coupling ratios of the xylene moiety, which appears to be solvent-dependent. This effect is enhanced by the replacement of N5 by C5-H in 5-deazaflavin derivatives compared to their respective flavin counterparts.


Assuntos
Dinitrocresóis , Prótons , Riboflavina , Análise Espectral , Flavoproteínas
2.
Angew Chem Int Ed Engl ; 62(43): e202309334, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37571931

RESUMO

Deazaflavins are important analogues of the naturally occurring flavins: riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD). The use of 5-deazaflavin as a replacement coenzyme in a number of flavoproteins has proven particularly valuable in unraveling and manipulating their reaction mechanisms. It was frequently reported that one-electron-transfer reactions in flavoproteins are impeded with 5-deazaflavin as the cofactor. Based on these findings, it was concluded that the 5-deazaflavin radical is significantly less stable compared to the respective flavin semiquinone and quickly re-oxidizes or undergoes disproportionation. The long-standing paradigm of 5-deazaflavin being solely a two-electron/hydride acceptor/donor-"a nicotinamide in flavin clothing"-needs to be re-evaluated now with the indirect observation of a one-electron-reduced (paramagnetic) species using photochemically induced dynamic nuclear polarization (photo-CIDNP) 1 H nuclear magnetic resonance (NMR) under biologically relevant conditions.

3.
J Chem Phys ; 151(23): 235103, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864274

RESUMO

In this contribution, the relative hyperfine couplings are determined for the 1H nuclei of the flavin mononucleotide (FMN) radical in an aqueous environment. In addition, three structural analogs with different methylation patterns are characterized and the influence of the substituents at the isoalloxazine moiety on the electronic structure of the radicals is explored. By exploiting nuclear hyperpolarization generated via the photo-CIDNP (chemically induced dynamic nuclear polarization) effect, it is possible to study the short-lived radical species generated by in situ light excitation. Experimental data are extracted by least-squares fitting and supported by quantum chemical calculations and published values from electron paramagnetic resonance and electron-nuclear double resonance. Furthermore, mechanistic details of the photoreaction of the investigated flavin analogs with l-tryptophan are derived from the photo-CIDNP spectra recorded at different pH values. Thereby, the neutral and anionic radicals of FMN and three structural analogs are, for the first time, characterized in terms of their electronic structure in an aqueous environment.

4.
ACS Omega ; 3(12): 18535-18541, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458424

RESUMO

Metal-organic frameworks (MOFs) found their well-deserved position in the field of gas adsorption and separation because of their unique properties. The separation of xenon from different gas mixtures containing this valuable and essential noble gas is also benefited from the exciting nature of MOFs. In this research, we chose a series of isoreticular MOFs as our study models to apply advanced molecular simulation techniques in the context of xenon separation from air. We investigated the separation performance of our model set through simulation of ternary gas adsorption isotherms and consequent calculation of separation performance descriptors, finding out that IRMOF-7 shows better recovering capabilities compared to the other studied MOFs. We benefited from visualization of xenon energy landscape within MOFs to obtain valuable information on possible reasoning behind our observations. We also examined temperature-based separation performance boosting strategy. Additionally, we noted that although promising candidates are present among the studied MOFs for xenon recovery from air, they are not suitable for xenon recovery from exhaled anesthetic gas mixture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA