Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mutat ; 39(12): 1774-1787, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30281865

RESUMO

A common null polymorphism in the ACTN3 gene (rs1815739:C>T) results in replacement of an arginine (R) with a premature stop codon (X) at amino acid 577 in the fast muscle protein α-actinin-3. The ACTN3 p.Arg577Ter allele (aka p.R577* or R577X) has undergone positive selection, with an increase in the X allele frequency as modern humans migrated out of Africa into the colder, less species-rich Eurasian climates suggesting that the absence of α-actinin-3 may be beneficial in these conditions. Approximately 1.5 billion people worldwide are completely deficient in α-actinin-3. While the absence of α-actinin-3 influences skeletal muscle function and metabolism this does not result in overt muscle disease. α-Actinin-3 deficiency (ACTN3 XX genotype) is constantly underrepresented in sprint/power performance athletes. However, recent findings from our group and others suggest that the ACTN3 R577X genotype plays a role beyond athletic performance with effects observed in ageing, bone health, and inherited muscle disorders such as McArdle disease and Duchenne muscle dystrophy. In this review, we provide an update on the current knowledge regarding the influence of ACTN3 R577X on skeletal muscle function and its potential biological and clinical implications. We also outline future research directions to explore the role of α-actinin-3 in healthy and diseased populations.


Assuntos
Actinina/genética , Envelhecimento/genética , Doenças Musculares/genética , Polimorfismo de Nucleotídeo Único , África , Desempenho Atlético , Genótipo , Migração Humana , Humanos , Seleção Genética
2.
BMC Genomics ; 19(1): 13, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298672

RESUMO

BACKGROUND: Studies investigating associations between ACTN3 R577X and ACE I/D genotypes and endurance athletic status have been limited by small sample sizes from mixed sport disciplines and lack quantitative measures of performance. AIM: To examine the association between ACTN3 R577X and ACE I/D genotypes and best personal running times in a large homogeneous cohort of endurance runners. METHODS: We collected a total of 1064 personal best 1500, 3000, 5000 m and marathon running times of 698 male and female Caucasian endurance athletes from six countries (Australia, Greece, Italy, Poland, Russia and UK). Athletes were genotyped for ACTN3 R577X and ACE ID variants. RESULTS: There was no association between ACTN3 R577X or ACE I/D genotype and running performance at any distance in men or women. Mean (SD) marathon times (in s) were for men: ACTN3 RR 9149 (593), RX 9221 (582), XX 9129 (582) p = 0.94; ACE DD 9182 (665), ID 9214 (549), II 9155 (492) p = 0.85; for women: ACTN3 RR 10796 (818), RX 10667 (695), XX 10675 (553) p = 0.36; ACE DD 10604 (561), ID 10766 (740), II 10771 (708) p = 0.21. Furthermore, there were no associations between these variants and running time for any distance in a sub-analysis of athletes with personal records within 20% of world records. CONCLUSIONS: Thus, consistent with most case-control studies, this multi-cohort quantitative analysis demonstrates it is unlikely that ACTN3 XX genotype provides an advantage in competitive endurance running performance. For ACE II genotype, some prior studies show an association but others do not. Our data indicate it is also unlikely that ACE II genotype provides an advantage in endurance running.


Assuntos
Actinina/genética , Atletas , Peptidil Dipeptidase A/genética , Resistência Física/genética , Polimorfismo Genético , Corrida/fisiologia , Feminino , Genótipo , Humanos , Masculino , População Branca/genética
3.
BMC Genomics ; 18(Suppl 8): 821, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29143594

RESUMO

The gene SMART (genes and the Skeletal Muscle Adaptive Response to Training) Study aims to identify genetic variants that predict the response to both a single session of High-Intensity Interval Exercise (HIIE) and to four weeks of High-Intensity Interval Training (HIIT). While the training and testing centre is located at Victoria University, Melbourne, three other centres have been launched at Bond University, Queensland University of Technology, Australia, and the University of Brighton, UK. Currently 39 participants have already completed the study and the overall aim is to recruit 200 moderately-trained, healthy Caucasians participants (all males 18-45 y, BMI < 30). Participants will undergo exercise testing and exercise training by an identical exercise program. Dietary habits will be assessed by questionnaire and dietitian consultation. Activity history is assessed by questionnaire and current activity level is assessed by an activity monitor. Skeletal muscle biopsies and blood samples will be collected before, immediately after and 3 h post HIIE, with the fourth resting biopsy and blood sample taken after four weeks of supervised HIIT (3 training sessions per week). Each session consists of eight to fourteen 2-min intervals performed at the pre-training lactate threshold (LT) power plus 40 to 70% of the difference between pre-training lactate threshold (LT) and peak aerobic power (Wpeak). A number of muscle and blood analyses will be performed, including (but not limited to) genotyping, mitochondrial respiration, transcriptomics, protein expression analyses, and enzyme activity. The participants serve as their own controls. Even though the gene SMART study is tightly controlled, our preliminary findings still indicate considerable individual variability in both performance (in-vivo) and muscle (in-situ) adaptations to similar training. More participants are required to allow us to better investigate potential underlying genetic and molecular mechanisms responsible for this individual variability.


Assuntos
Adaptação Fisiológica/genética , Exercício Físico , Músculo Esquelético/fisiologia , Adolescente , Adulto , Biomarcadores/sangue , Respiração Celular , Feminino , Perfilação da Expressão Gênica , Técnicas de Genotipagem , Treinamento Intervalado de Alta Intensidade , Humanos , Masculino , Mitocôndrias/metabolismo , Adulto Jovem
4.
BMC Genomics ; 17: 285, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27075997

RESUMO

BACKGROUND: To date, studies investigating the association between ACTN3 R577X and ACE I/D gene variants and elite sprint/power performance have been limited by small cohorts from mixed sport disciplines, without quantitative measures of performance. AIM: To examine the association between these variants and sprint time in elite athletes. METHODS: We collected a total of 555 best personal 100-, 200-, and 400-m times of 346 elite sprinters in a large cohort of elite Caucasian or African origin sprinters from 10 different countries. Sprinters were genotyped for ACTN3 R577X and ACE ID variants. RESULTS: On average, male Caucasian sprinters with the ACTN3 577RR or the ACE DD genotype had faster best 200-m sprint time than their 577XX (21.19 ± 0.53 s vs. 21.86 ± 0.54 s, p = 0.016) and ACE II (21.33 ± 0.56 vs. 21.93 ± 0.67 sec, p = 0.004) counterparts and only one case of ACE II, and no cases of ACTN3 577XX, had a faster 200-m time than the 2012 London Olympics qualifying (vs. 12 qualified sprinters with 577RR or 577RX genotype). Caucasian sprinters with the ACE DD genotype had faster best 400-m sprint time than their ACE II counterparts (46.94 ± 1.19 s vs. 48.50 ± 1.07 s, p = 0.003). Using genetic models we found that the ACTN3 577R allele and ACE D allele dominant model account for 0.92 % and 1.48 % of sprint time variance, respectively. CONCLUSIONS: Despite sprint performance relying on many gene variants and environment, the % sprint time variance explained by ACE and ACTN3 is substantial at the elite level and might be the difference between a world record and only making the final.


Assuntos
Actinina/genética , Atletas , Desempenho Atlético , Peptidil Dipeptidase A/genética , Corrida , Alelos , População Negra , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Polimorfismo Genético , População Branca
5.
Bone ; 123: 23-27, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30878522

RESUMO

INTRODUCTION: Osteocalcin (OC) is used as a surrogate marker for bone turnover in clinical settings. As bone mineral density (BMD) is largely heritable, we tested the hypothesis that a) bone-associated genetic variants previously identified in Genome-Wide Association Studies (GWAS) and combined into a genetic risk score (GRS) are associated with a) circulating levels of OC and b) the changes in OC following acute exercise. METHODS: Total OC (tOC), undercarboxylated OC (ucOC), and carboxylated OC (cOC) were measured in serum of 73 healthy Caucasian males at baseline and after a single bout of high-intensity interval exercise. In addition, genotyping was conducted targeting GWAS variants previously reported to be associated with BMD and then combined into a GRS. Potential associations between the GRS and tOC, ucOC and cOC were tested with linear regressions adjusted for age. RESULTS: At baseline none of the individual SNPs associated with tOC, ucOC and cOC. However, when combined, a higher GRS was associated with higher tOC (ß = 0.193 ng/mL; p = 0.037; 95% CI = 0.012, 0.361) and cOC (ß = 0.188 ng/mL; p = 0.04; 95% CI = 0.004, 0.433). Following exercise, GRS was associated with ucOC levels, (ß = 3.864 ng/mL; p-value = 0.008; 95% CI = 1.063, 6.664) but not with tOC or cOC. CONCLUSION: Screening for genetic variations may assist in identifying people at risk for abnormal circulating levels of OC at baseline/rest. Genetic variations in BMD predicted the ucOC response to acute exercise indicating that physiological functional response to exercise may be influenced by bone-related gene variants.


Assuntos
Densidade Óssea/fisiologia , Exercício Físico/fisiologia , Osteocalcina/sangue , Adulto , Biomarcadores/sangue , Densidade Óssea/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Adulto Jovem
6.
J Appl Physiol (1985) ; 125(3): 923-930, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29927735

RESUMO

Angiotensin-converting enzyme (ACE) is expressed in human skeletal muscle. The ACE I/D polymorphism has been associated with athletic performance in some studies. Studies have suggested that the ACE I/D gene variant is associated with ACE enzyme content in serum, and there is an interaction between ACE and uncoupling proteins 2 and 3 (UCP2 and UCP3). However, no studies have explored the effect of ACE I/D on ACE, UCP2, and UCP3 protein content in human skeletal muscle. Utilizing the Gene SMART cohort ( n = 81), we investigated whether the ACE I/D gene variant is associated with ACE enzyme content in blood and ACE, UCP2, and UCP3 protein content in skeletal muscle at baseline and following a session of high-intensity interval exercise (HIIE). Using a stringent and robust statistical analyses, we found that the ACE I/D gene variant was associated with ACE enzyme content in blood ( P < 0.005) at baseline but not the ACE, UCP2, and UCP3 protein content in muscle at baseline. A single session of HIIE tended (0.005 < P < 0.05) to increase blood ACE content immediately postexercise, whereas muscle ACE protein content was lower 3 h after a single session of HIIE ( P < 0.005). Muscle UCP3 protein content decreased immediately after a single session of HIIE ( P < 0.005) and remained low 3 h postexercise. However, those changes in the muscle were not genotype dependent. In conclusion, The ACE I/D gene variant predicts ACE enzyme content in blood but not the ACE, UCP2, and UCP3 protein content of human skeletal muscle. NEW & NOTEWORTHY This paper describes the association between ACE I/D gene variant and ACE protein content in blood and ACE, UCP2, and UCP3 protein content in skeletal muscle at baseline and after exercise in a large cohort of healthy males. Our data suggest that ACE I/D is a strong predictor of blood ACE content but not muscle ACE content.


Assuntos
Músculo Esquelético/metabolismo , Peptidil Dipeptidase A/genética , Proteína Desacopladora 2/genética , Proteína Desacopladora 3/genética , Adulto , Metabolismo Energético , Exercício Físico , Variação Genética , Genótipo , Humanos , Masculino , Estado Nutricional , Peptidil Dipeptidase A/sangue , Peptidil Dipeptidase A/metabolismo , Proteína Desacopladora 2/sangue , Proteína Desacopladora 3/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA