Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 48(2): 288-97, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23000173

RESUMO

A large group of E3 ubiquitin ligases is formed by the multisubunit SCF complex, whose core complex (Rbx1/Cul1-Cdc53/Skp1) binds one of many substrate recruiting F-box proteins to form an array of SCF ligases with diverse substrate specificities. It has long been thought that ubiquitylation by SCF ligases is regulated at the level of substrate binding. Here we describe an alternative mechanism of SCF regulation by active dissociation of the F-box subunit. We show that cadmium stress induces selective recruitment of the AAA(+) ATPase Cdc48/p97 to catalyze dissociation of the F-box subunit from the yeast SCF(Met30) ligase to block substrate ubiquitylation and trigger downstream events. Our results not only provide an additional layer of ubiquitin ligase regulation but also suggest that targeted, signal-dependent dissociation of multisubunit enzyme complexes is an important mechanism in control of enzyme function.


Assuntos
Adenosina Trifosfatases , Proteínas de Ciclo Celular , Proteínas Ligases SKP Culina F-Box , Saccharomyces cerevisiae/enzimologia , Ubiquitinação , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Cádmio/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Hidrólise/efeitos dos fármacos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Especificidade por Substrato , Proteína com Valosina
2.
J Mol Biol ; 367(2): 328-43, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17275024

RESUMO

The phage-encoded Xis protein is the major determinant controlling the direction of recombination in phage lambda. Xis is a winged-helix DNA binding protein that cooperatively binds to the attR recombination site to generate a curved microfilament, which promotes assembly of the excisive intasome but inhibits formation of an integrative intasome. We find that lambda synthesizes surprisingly high levels of Xis immediately upon prophage induction when excision rates are maximal. However, because of its low sequence-specific binding activity, exemplified by a 1.9 A co-crystal structure of a non-specifically bound DNA complex, Xis is relatively ineffective at promoting excision in vivo in the absence of the host Fis protein. Fis binds to a segment in attR that almost entirely overlaps one of the Xis binding sites. Instead of sterically excluding Xis binding from this site, as has been previously believed, we show that Fis enhances binding of all three Xis protomers to generate the microfilament. A specific Fis-Xis interface is supported by the effects of mutations within each protein, and relaxed, but not completely sequence-neutral, binding by the central Xis protomer is supported by the effects of DNA mutations. We present a structural model for the 50 bp curved Fis-Xis cooperative complex that is assembled between the arm and core Int binding sites whose trajectory places constraints on models for the excisive intasome structure.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófago lambda/metabolismo , DNA Nucleotidiltransferases/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Nucleoproteínas/metabolismo , Recombinação Genética , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Bacteriófago lambda/genética , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA Nucleotidiltransferases/genética , Dimerização , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação , Dados de Sequência Molecular , Mutação , Nucleoproteínas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Fatores de Transcrição/genética , Proteínas Virais/genética , Ativação Viral
3.
J Mol Biol ; 324(4): 775-89, 2002 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-12460577

RESUMO

The site-specific recombinase (Int) of bacteriophage lambda is a heterobivalent DNA-binding protein that binds two different classes of DNA-binding sites within its recombination target sites. The several functions of Int are apportioned between a large carboxy-terminal domain that cleaves and ligates DNA at each of its four "core-type" DNA-binding sites and a small amino-terminal domain, whose primary function is binding to each of its five "arm-type" DNA sites, which are distant from the core region. Int bridges between the two classes of binding sites are facilitated by accessory DNA-bending proteins that along with Int comprise higher-order recombinogenic complexes. We show here that although the 64 amino-terminal residues of Int bind efficiently to a single arm site, this protein cannot form doubly bound complexes on adjacent arm sites. However, 1-70 Int does show the same cooperative binding to adjacent arm sites as the full length protein. We also found that 1-70 Int specifies cooperative interactions with the accessory protein Xis when the two are bound to their adjacent cognate sites P2 and X1, respectively. To complement the finding that these two amino-terminal domain functions (along with arm DNA binding) are all specified by residues 1-70, we determined that Thr75 is the first residue of the minimal carboxy-terminal domain, thereby identifying a specific interdomain linker region. We have measured the affinity constants for Int binding to each of the five arm sites and the cooperativity factors for Int binding to the two pairs of adjacent arm sites, and we have identified several DNA structural features that contribute to the observed patterns of Int binding to arm sites. Taken together, the results highlight several interesting features of arm DNA binding that invite speculation about additional levels of complexity in the regulation of lambda site-specific recombination.


Assuntos
Bacteriófago lambda/enzimologia , Integrases/química , Integrases/metabolismo , Proteínas Virais , Sequência de Aminoácidos , Bacteriófago lambda/genética , Sequência de Bases , Sítios de Ligação , DNA Nucleotidiltransferases/metabolismo , DNA Bacteriano/química , DNA Viral/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Integrases/genética , Oligonucleotídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Recombinação Genética , Treonina/química
4.
J Mol Biol ; 324(4): 791-805, 2002 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-12460578

RESUMO

Upon induction of a bacteriophage lambda lysogen, a site-specific recombination reaction excises the phage genome from the chromosome of its bacterial host. A critical regulator of this process is the phage-encoded excisionase (Xis) protein, which functions both as a DNA architectural factor and by cooperatively recruiting integrase to an adjacent binding site specifically required for excision. Here we present the three-dimensional structure of Xis and the results of a structure-based mutagenesis study to define the molecular basis of its function. Xis adopts an unusual "winged"-helix motif that is modeled to interact with the major- and minor-grooves of its binding site through a single alpha-helix and loop structure ("wing"), respectively. The C-terminal tail of Xis, which is required for cooperative binding with integrase, is unstructured in the absence of DNA. We propose that asymmetric bending of DNA by Xis positions its unstructured C-terminal tail for direct contacts with the N-terminal DNA-binding domain of integrase and that an ensuing disordered to ordered transition of the tail may act to stabilize the formation of the tripartite integrase-Xis-DNA complex required for phage excision.


Assuntos
Bacteriófago lambda/enzimologia , Bacteriófago lambda/genética , DNA Nucleotidiltransferases/química , Recombinação Genética , Proteínas Virais , Motivos de Aminoácidos , Sítios de Ligação Microbiológicos , Bacteriófago lambda/metabolismo , Sequência de Bases , Sítios de Ligação , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , Ligação de Hidrogênio , Integrases/química , Integrases/genética , Integrases/metabolismo , Modelos Genéticos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
5.
J Biol Chem ; 283(17): 11615-24, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18308733

RESUMO

Met30 is the substrate recognition subunit of the essential ubiquitin ligase SCF(Met30). The essential function of Met30 is the inactivation of the Saccharomyces cerevisiae transcription factor Met4, because fully activated Met4 induces a cell cycle arrest. Met4 regulates expression of genes involved in the sulfur assimilation pathway and coordinates the transcriptional program and cell cycle progression in response to cadmium and arsenic stress. Met4 lacks DNA binding activity and requires either Cbf1 or one of the two homologous proteins Met31 and Met32 for promoter association. Accordingly, met4 mutants, cbf1 mutants, and met31 met32 double mutants are methionine auxotroph. We isolated a truncated version of Met32 (Met32(Delta145-192)) as a dominant suppressor of the cell cycle defect of met30 mutants. Expression of Met32(Delta145-192) significantly reduced induction of Met4-regulated genes. Interestingly, both Cbf1- and Met31/32-dependent genes were affected by Met32(Delta145-192). Mechanistically, Met32(Delta145-192) prevented recruitment of Met4 to both Cbf1 and Met31/32-dependent promoters. We further demonstrated that Met32 is part of the Cbf1-Met4 complex bound to Cbf1-recruiting promoter elements and that Met31/32 are required for formation of a stable Met4-Cbf1 transcription complex. These results suggest a regulatory role of Met32 as part of the Cbf1-Met4 complex and provide molecular insight into coordination of cell cycle response and modulation of gene expression programs.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Genes Dominantes , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Complexos Ubiquitina-Proteína Ligase/genética , Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box , Regulação da Expressão Gênica , Modelos Biológicos , Modelos Genéticos , Mutação , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Complexos Ubiquitina-Proteína Ligase/metabolismo
6.
Proc Natl Acad Sci U S A ; 104(7): 2109-14, 2007 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-17287355

RESUMO

The DNA architectural protein Xis regulates the construction of higher-order nucleoprotein intasomes that integrate and excise the genome of phage lambda from the Escherichia coli chromosome. Xis modulates the directionality of site-specific recombination by stimulating phage excision 10(6)-fold, while simultaneously inhibiting phage reintegration. Control is exerted by cooperatively assembling onto a approximately 35-bp DNA regulatory element, which it distorts to preferentially stabilize an excisive intasome. Here, we report the 2.6-A crystal structure of the complex between three cooperatively bound Xis proteins and a 33-bp DNA containing the regulatory element. Xis binds DNA in a head-to-tail orientation to generate a micronucleoprotein filament. Although each protomer is anchored to the duplex by a similar set of nonbase specific contacts, malleable protein-DNA interactions enable binding to sites that differ in nucleotide sequence. Proteins at the ends of the duplex sequence specifically recognize similar binding sites and participate in cooperative binding via protein-protein interactions with a bridging Xis protomer that is bound in a less specific manner. Formation of this polymer introduces approximately 72 degrees of curvature into the DNA with slight positive writhe, which functions to connect disparate segments of DNA bridged by integrase within the excisive intasome.


Assuntos
Bacteriófago lambda/metabolismo , DNA Nucleotidiltransferases/química , DNA/química , Nucleoproteínas/química , Proteínas Virais/química , Integração Viral/genética , Bacteriófago lambda/química , Bacteriófago lambda/genética , Sequência de Bases , Sítios de Ligação , Cromossomos Bacterianos , Cristalografia por Raios X , DNA/fisiologia , DNA Nucleotidiltransferases/fisiologia , Escherichia coli/genética , Integrases , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Nucleoproteínas/fisiologia , Ligação Proteica , Recombinação Genética , Sequências Reguladoras de Ácido Nucleico , Proteínas Virais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA