Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nano Lett ; 24(4): 1431-1438, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252694

RESUMO

Transition metal dichalcogenides (TMDCs) have garnered considerable interest over the past decade as a class of semiconducting layered materials. Most studies on the carrier dynamics in these materials have focused on the monolayer due to its direct bandgap, strong photoluminescence, and strongly bound excitons. However, a comparative understanding of the carrier dynamics in multilayer (e.g., >10 layers) flakes is still absent. Recent computational studies have suggested that excitons in bulk TMDCs are confined to individual layers, leading to room-temperature stable exciton populations. Using this new context, we explore the carrier dynamics in MoSe2 flakes that are between ∼16 and ∼125 layers thick. We assign the kinetics to exciton-exciton annihilation (EEA) and Shockley-Read-Hall recombination of free carriers. Interestingly, the average observed EEA rate constant (0.003 cm2/s) is nearly independent of flake thickness and 2 orders of magnitude smaller than that of an unencapsulated monolayer (0.33 cm2/s) but very similar to values observed in encapsulated monolayers. Thus, we posit that strong intralayer interactions minimize the effect of layer thickness on recombination dynamics, causing the multilayer to behave like the monolayer and exhibit an apparent EEA rate intrinsic to MoSe2.

2.
Chemistry ; 28(10): e202102630, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35113460

RESUMO

In fabricating an artificial photosynthesis (AP) electrode for water oxidation, we have devised a semiconductor-mediator-catalyst structure that mimics photosystem II (PSII). It is based on a surface layer of vertically grown nanorods of Fe2 O3 on fluorine doped tin oxide (FTO) electrodes with a carbazole mediator base and a Ru(II) carbene complex on a nanolayer of TiO2 as a water oxidation co-catalyst. The resulting hybrid assembly, FTO|Fe2 O3 |-carbazole|TiO2 |-Ru(carbene), demonstrates an enhanced photoelectrochemical (PEC) water oxidation performance compared to an electrode without the added carbaozle base with an increase in photocurrent density of 2.2-fold at 0.95 V vs. NHE and a negatively shifted onset potential of 500 mV. The enhanced PEC performance is attributable to carbazole mediator accelerated interfacial hole transfer from Fe2 O3 to the Ru(II) carbene co-catalyst, with an improved effective surface area for the water oxidation reaction and reduced charge transfer resistance.


Assuntos
Fotossíntese , Água , Catálise , Oxirredução , Semicondutores , Água/química
3.
J Chem Phys ; 157(24): 244703, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36586990

RESUMO

A kinetic framework for the ultrafast photophysics of tris(2,2-bipyridine)ruthenium(II) phosphonated and methyl-phosphonated derivatives is used as a basis for modeling charge injection by ruthenium dyes into a semiconductor substrate. By including the effects of light scattering, dye diffusion, and adsorption kinetics during sample preparation and the optical response of oxidized dyes, quantitative agreement with multiple transient absorption datasets is achieved on timescales spanning femtoseconds to nanoseconds. In particular, quantitative agreement with important spectroscopic handles-the decay of an excited state absorption signal component associated with charge injection in the UV region of the spectrum and the dynamical redshift of a ∼500 nm isosbestic point-validates our kinetic model. Pseudo-first-order rate coefficients for charge injection are estimated in this work, with an order of magnitude ranging from 1011 to 1012 s-1. The model makes the minimalist assumption that all excited states of a particular dye have the same charge injection coefficient, an assumption that would benefit from additional theoretical and experimental exploration. We have adapted this kinetic model to predict charge injection under continuous solar irradiation and find that as many as 68 electron transfer events per dye per second take place, significantly more than prior estimates in the literature.

4.
Proc Natl Acad Sci U S A ; 113(40): 11106-11109, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27660239

RESUMO

The phenols 4-methylphenol, 4-methoxyphenol, and N-acetyl-tyrosine form hydrogen-bonded adducts with N-methyl-4, 4'-bipyridinium cation (MQ+) in aqueous solution as evidenced by the appearance of low-energy, low-absorptivity features in UV-visible spectra. They are assigned to the known examples of optically induced, concerted electron-proton transfer, photoEPT. The results of ultrafast transient absorption measurements on the assembly MeOPhO-H---MQ+ are consistent with concerted EPT by the instantaneous appearance of spectral features for MeOPhO·---H-MQ+ in the transient spectra at the first observation time of 0.1 ps. The transient decays to MeOPhO-H---MQ+ in 2.5 ps, accompanied by the appearance of oscillations in the decay traces with a period of ∼1 ps, consistent with a vibrational coherence and relaxation from a higher υ(N-H) vibrational level or levels on the timescale for back EPT.

5.
J Am Chem Soc ; 140(31): 9823-9826, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30036057

RESUMO

A ruthenium polypyridyl chromophore with electronically isolated triarylamine substituents has been synthesized that models the role of tyrosine in the electron transport chain in photosystem II. When bound to the surface of a TiO2 electrode, electron injection from a Ru(II) Metal-to-Ligand Charge Transfer (MLCT) excited state occurs from the complex to the electrode to give Ru(III). Subsequent rapid electron transfer from the pendant triarylamine to Ru(III) occurs with an observed rate constant of ∼1010 s-1, which is limited by the rate of electron injection into the semiconductor. Transfer of the oxidative equivalent away from the semiconductor surface results in dramatically reduced rates of back electron transfer, and a long-lived (τ = ∼165 µs) triarylamine radical cation that has been used to oxidize hydroquinone to quinone in solution.

6.
Nano Lett ; 17(10): 5956-5961, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28895747

RESUMO

Surface trap density in silicon nanowires (NWs) plays a key role in the performance of many semiconductor NW-based devices. We use pump-probe microscopy to characterize the surface recombination dynamics on a point-by-point basis in 301 silicon NWs grown using the vapor-liquid-solid (VLS) method. The surface recombination velocity (S), a metric of the surface quality that is directly proportional to trap density, is determined by the relationship S = d/4τ from measurements of the recombination lifetime (τ) and NW diameter (d) at distinct spatial locations in individual NWs. We find that S varies by as much as 2 orders of magnitude between NWs grown at the same time but varies only by a factor of 2 or three within an individual NW. Although we find that, as expected, smaller-diameter NWs exhibit shorter τ, we also find that smaller wires exhibit higher values of S; this indicates that τ is shorter both because of the geometrical effect of smaller d and because of a poorer quality surface. These results highlight the need to consider interwire heterogeneity as well as diameter-dependent surface effects when fabricating NW-based devices.

7.
Nano Lett ; 17(12): 7561-7568, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29111750

RESUMO

Lead halide perovskites (LHPs) have shown remarkable promise for use in photovoltaics, photodetectors, light-emitting diodes, and lasers. Although solution-processed polycrystalline films are the most widely studied morphology, LHP nanowires (NWs) grown by vapor-phase processes offer the potential for precise control over crystallinity, phase, composition, and morphology. Here, we report the first demonstration of self-catalyzed vapor-liquid-solid (VLS) growth of lead halide (PbX2; X = Cl, Br, or I) NWs and conversion to LHP. We present a kinetic model of the PbX2 NW growth process in which a liquid Pb catalyst is supersaturated with halogen X through vapor-phase incorporation of both Pb and X, inducing growth of a NW. For PbI2, we show that the NWs are single-crystalline, oriented in the ⟨1̅21̅0⟩ direction, and composed of a stoichiometric PbI2 shaft with a spherical Pb tip. Low-temperature vapor-phase intercalation of methylammonium iodide converts the NWs to methylammonium lead iodide (MAPbI3) perovskite while maintaining the NW morphology. Single-NW experiments comparing measured extinction spectra with optical simulations show that the NWs exhibit a strong optical antenna effect, leading to substantially enhanced scattering efficiencies and to absorption efficiencies that can be more than twice that of thin films of the same thickness. Further development of the self-catalyzed VLS mechanism for lead halide and perovskite NWs should enable the rational design of nanostructures for various optoelectronic technologies, including potentially unique applications such as hot-carrier solar cells.

8.
J Phys Chem A ; 121(50): 9579-9588, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29111732

RESUMO

A series of linear thiophene oligomers containing 4, 6, 8, 10, and 12 thienylene units were synthesized and end-capped with naphthalene diimide (NDI) acceptors with the objective to study the effect of oligomer length on the dynamics of photoinduced electron transfer and charge recombination. The synthetic work afforded a series of nonacceptor-substituted thiophene oligomers, Tn, and corresponding NDI end-capped series, TnNDI2 (where n is the number of thienylene repeat units). This paper reports a complete photophysical characterization study of the Tn and TnNDI2 series by using steady-state absorption, fluorescence, singlet oxygen sensitized emission, two-photon absorption, and nanosecond-microsecond transient absorption spectroscopy. The thermodynamics of photoinduced electron transfer and charge recombination in the TnNDI2 oligomers were determined by analysis of photophysical and electrochemical data. Excitation of the Tn oligomers gives rise to efficient fluorescence and intersystem crossing to a triplet excited state that is easily observed by nanosecond transient absorption spectroscopy. Bimolecular photoinduced electron transfer from the triplet states, 3Tn*, to N,N-dimethylviologen (MV2+) occurs, and by using microsecond transient absorption it is possible to assign the visible region absorption spectra for the one electron oxidized (polaron) states, Tn+•. The fluorescence of the TnNDI2 oligomers is quenched nearly quantitatively, and no long-lived transients are observed by nanosecond transient absorption. These findings suggest that rapid photoinduced electron transfer and charge recombination occurs, NDI-1(Tn)*-NDI → NDI-(Tn)+•-NDI-• → NDI-Tn-NDI. Preliminary femtosecond-picosecond transient absorption studies on T4NDI2 reveal that both forward electron transfer and charge recombination occur with k > 1011 s-1, consistent with both reactions being nearly activationless. Analysis with semiclassical electron transfer theory suggests that both reactions occur at near the optimum driving force where -ΔG ∼ λ.

9.
Nano Lett ; 16(1): 434-9, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26629610

RESUMO

Thermal management is an important consideration for most nanoelectronic devices, and an understanding of the thermal conductivity of individual device components is critical for the design of thermally efficient systems. However, it can be difficult to directly probe local changes in thermal conductivity within a nanoscale system. Here, we utilize the time-resolved and diffraction-limited imaging capabilities of ultrafast pump-probe microscopy to determine, in a contact-free configuration, the local thermal conductivity in individual Si nanowires (NWs). By suspending single NWs across microfabricated trenches in a quartz substrate, the properties of the same NW both on and off the substrate are directly compared. We find the substrate has no effect on the recombination lifetime or diffusion length of photogenerated charge carriers; however, it significantly impacts the thermal relaxation properties of the NW. In substrate-supported regions, thermal energy deposited into the lattice by the ultrafast laser pulse dissipates within ∼10 ns through thermal diffusion and coupling to the substrate. In suspended regions, the thermal energy persists for over 100 ns, and we directly image the time-resolved spatial motion of the thermal signal. Quantitative analysis of the transient images permits direct determination of the NW's local thermal conductivity, which we find to be a factor of ∼4 smaller than in bulk Si. Our results point to the strong potential of pump-probe microscopy to be used as an all-optical method to quantify the effects of localized environment and morphology on the thermal transport characteristics of individual nanostructured components.

10.
J Am Chem Soc ; 138(13): 4426-38, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26974040

RESUMO

Interfacial electron transfer at titanium dioxide (TiO2) is investigated for a series of surface bound ruthenium-polypyridyl dyes whose metal-to-ligand charge-transfer state (MLCT) energetics are tuned through chemical modification. The 12 complexes are of the form Ru(II)(bpy-A)(L)2(2+), where bpy-A is a bipyridine ligand functionalized with phosphonate groups for surface attachment to TiO2. Functionalization of ancillary bipyridine ligands (L) enables the potential of the excited state Ru(III/)* couple, E(+/)*, in 0.1 M perchloric acid (HClO4(aq)) to be tuned from -0.69 to -1.03 V vs NHE. Each dye is excited by a 200 fs pulse of light in the visible region of the spectrum and probed with a time-delayed supercontiuum pulse (350-800 nm). Decay of the MLCT excited-state absorption at 376 nm is observed without loss of the ground-state bleach, which is a clear signature of electron injection and formation of the oxidized dye. The dye-dependent decays are biphasic with time constants in the 3-30 and 30-500 ps range. The slower injection rate constant for each dye is exponentially distributed relative to E(+/)*. The correlation between the exponentially diminishing density of TiO2 sub-band acceptor levels and injection rate is well described using Marcus-Gerischer theory, with the slower decay components being assigned to injection from the thermally equilibrated state and the faster components corresponding to injection from higher energy states within the (3)MLCT manifold. These results and detailed analyses incorporating molecular photophysics and semiconductor density of states measurements indicate that the multiexponential behavior that is often observed in interfacial injection studies is not due to sample heterogeneity. Rather, this work shows that the kinetic heterogeneity results from competition between excited-state relaxation and injection as the photoexcited dye relaxes through the (3)MLCT manifold to the thermally equilibrated state, underscoring the potential for a simple kinetic model to reproduce the complex kinetic behavior often observed at the interface of mesoporous metal oxide materials.

11.
J Am Chem Soc ; 138(40): 13085-13102, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27654634

RESUMO

The dye-sensitized photoelectrosynthesis cell (DSPEC) integrates high bandgap, nanoparticle oxide semiconductors with the light-absorbing and catalytic properties of designed chromophore-catalyst assemblies. The goals are photoelectrochemical water splitting into hydrogen and oxygen and reduction of CO2 by water to give oxygen and carbon-based fuels. Solar-driven water oxidation occurs at a photoanode and water or CO2 reduction at a cathode or photocathode initiated by molecular-level light absorption. Light absorption is followed by electron or hole injection, catalyst activation, and catalytic water oxidation or water/CO2 reduction. The DSPEC is of recent origin but significant progress has been made. It has the potential to play an important role in our energy future.

12.
Acc Chem Res ; 48(3): 818-27, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25647081

RESUMO

The use of sunlight to make chemical fuels (i.e., solar fuels) is an attractive approach in the quest to develop sustainable energy sources. Using nature as a guide, assemblies for artificial photosynthesis will need to perform multiple functions. They will need to be able to harvest light across a broad region of the solar spectrum, transport excited-state energy to charge-separation sites, and then transport and store redox equivalents for use in the catalytic reactions that produce chemical fuels. This multifunctional behavior will require the assimilation of multiple components into a single macromolecular system. A wide variety of different architectures including porphyrin arrays, peptides, dendrimers, and polymers have been explored, with each design posing unique challenges. Polymer assemblies are attractive due to their relative ease of production and facile synthetic modification. However, their disordered nature gives rise to stochastic dynamics not present in more ordered assemblies. The rational design of assemblies requires a detailed understanding of the energy and electron transfer events that follow light absorption, which can occur on time scales ranging from femtoseconds to hundreds of microseconds, necessitating the use of sophisticated techniques. We have used a combination of time-resolved absorption and emission spectroscopies with observation times that span 9 orders of magnitude to follow the excited-state evolution within polymer-based molecular assemblies. We complement experimental observations with molecular dynamics simulations to develop a microscopic view of these dynamics. This Account provides an overview of our work on polymers decorated with pendant Ru(II) chromophores, both in solution and on surfaces. We have examined site-to-site energy transport among the Ru(II) complexes, and in systems incorporating π-conjugated polymers, we have observed ultrafast formation of a long-lived charge-separated state. When attached to TiO2, these assemblies exhibit multifunctional behavior in which photon absorption is followed by energy transport to the surface and electron injection to produce an oxidized metal complex. The oxidizing equivalent is then transferred to the conjugated polymer, giving rise to a long-lived charge-separated state.

13.
Inorg Chem ; 54(2): 460-9, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25532589

RESUMO

In the design of light-harvesting chromophores for use in dye-sensitized photoelectrosynthesis cells (DSPECs), surface binding to metal oxides in aqueous solutions is often inhibited by synthetic difficulties. We report here a systematic synthesis approach for preparing a family of Ru(II) polypyridyl complexes of the type [Ru(4,4'-R2-bpy)2(4,4'-(PO3H2)2-bpy)](2+) (4,4'(PO3H2)2-bpy = [2,2'-bipyridine]-4,4'-diylbis(phosphonic acid); 4,4'-R2-bpy = 4,4'-R2-2,2'-bipyridine; and R = OCH3, CH3, H, or Br). In this series, the nature of the 4,4'-R2-bpy ligand is modified through the incorporation of electron-donating (R = OCH3 or CH3) or electron-withdrawing (R = Br) functionalities to tune redox potentials and excited-state energies. Electrochemical measurements show that the ground-state potentials, E(o')(Ru(3+/2+)), vary from 1.08 to 1.45 V (vs NHE) when the complexes are immobilized on TiO2 electrodes in aqueous HClO4 (0.1 M) as a result of increased Ru dπ-π* back-bonding caused by the lowering of the π* orbitals on the 4,4'-R2-bpy ligand. The same ligand variations cause a negligible shift in the metal-to-ligand charge-transfer absorption energies. Emission energies decrease from λmax = 644 to 708 nm across the series. Excited-state redox potentials are derived from single-mode Franck-Condon analyses of room-temperature emission spectra and are discussed in the context of DSPEC applications.

14.
Nano Lett ; 14(11): 6287-92, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25259929

RESUMO

Strain-induced changes to the electronic structure of nanoscale materials provide a promising avenue for expanding the optoelectronic functionality of semiconductor nanostructures in device applications. Here we use pump-probe microscopy with femtosecond temporal resolution and submicron spatial resolution to characterize charge-carrier recombination and transport dynamics in silicon nanowires (NWs) locally strained by bending deformation. The electron-hole recombination rate increases with strain for values above a threshold of ∼1% and, in highly strained (∼5%) regions of the NW, increases 6-fold. The changes in recombination rate are independent of NW diameter and reversible upon reduction of the applied strain, indicating the effect originates from alterations to the NW bulk electronic structure rather than introduction of defects. The results highlight the strong relationship between strain, electronic structure, and charge-carrier dynamics in low-dimensional semiconductor systems, and we anticipate the results will assist the development of strain-enabled optoelectronic devices with indirect-bandgap materials such as silicon.

15.
Nano Lett ; 14(6): 3079-87, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24867088

RESUMO

Silicon nanowires incorporating p-type/n-type (p-n) junctions have been introduced as basic building blocks for future nanoscale electronic components. Controlling charge flow through these doped nanostructures is central to their function, yet our understanding of this process is inferred from measurements that average over entire structures or integrate over long times. Here, we have used femtosecond pump-probe microscopy to directly image the dynamics of photogenerated charge carriers in silicon nanowires encoded with p-n junctions along the growth axis. Initially, motion is dictated by carrier-carrier interactions, resulting in diffusive spreading of the neutral electron-hole cloud. Charge separation occurs at longer times as the carrier distribution reaches the edges of the depletion region, leading to a persistent electron population in the n-type region. Time-resolved visualization of the carrier dynamics yields clear, direct information on fundamental drift, diffusion, and recombination processes in these systems, providing a powerful tool for understanding and improving materials for nanotechnology.

16.
J Am Chem Soc ; 136(45): 15869-72, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25330285

RESUMO

Photoinduced, interfacial electron injection and back electron transfer between surface-bound [Ru(II)(bpy)2(4,4'-(PO3H2)2-bpy)](2+) and degenerately doped In2O3:Sn nanoparticles, present in mesoporous thin films (nanoITO), have been studied as a function of applied external bias. Due to the metallic behavior of the nanoITO films, application of an external bias was used to vary the Fermi level in the oxide and, with it, the driving force for electron transfer (ΔG(o)'). By controlling the external bias, ΔG(o)' was varied from 0 to -1.8 eV for electron injection and from -0.3 to -1.3 eV for back electron transfer. Analysis of the back electron-transfer data, obtained from transient absorption measurements, using Marcus-Gerischer theory gave an experimental estimate of λ = 0.56 eV for the reorganization energy of the surface-bound Ru(III/II) couple in acetonitrile with 0.1 M LiClO4 electrolyte.

17.
J Am Chem Soc ; 136(6): 2208-11, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24460093

RESUMO

Interfacial electron transfer to and from conductive Sn-doped In2O3 (ITO) nanoparticles (NPs) in mesoporous thin films has been investigated by transient absorption measurements using surface-bound [Ru(II)(bpy)2(dcb)](2+) (bpy is 2,2'-bipyridyl and dcb is 4,4'-(COOH)2-2,2'-bipyridyl). Metal-to-ligand charge transfer excitation in 0.1 M LiClO4 MeCN results in efficient electron injection into the ITO NPs on the picosecond time scale followed by back electron transfer on the nanosecond time scale. Rates of back electron transfer are dependent on thermal annealing conditions with the rate constant increasing from 1.8 × 10(8) s(-1) for oxidizing annealing conditions to 8.0 × 10(8) s(-1) for reducing conditions, presumably due to an enhanced electron concentration in the latter.

18.
J Phys Chem A ; 118(45): 10301-8, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24734993

RESUMO

Femtosecond transient absorption spectroscopy is used to characterize the first photoactivation step in a chromophore/water oxidation catalyst assembly formed through a "layer-by-layer" approach. Assemblies incorporating both chromophores and catalysts are central to the function of dye-sensitized photoelectrosynthesis cells (DSPECs) for generating solar fuels. The chromophore, [Rua(II)](2+) = [Ru(pbpy)2(bpy)](2+), and water oxidation catalyst, [Rub(II)-OH2](2+) = [Ru(4,4'-(CH2PO3H2)2bpy)(Mebimpy)(H2O)](2+), where bpy = 2,2'-bipyridine, pbpy = 4,4'-(PO3H2)2bpy, and Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine), are arranged on nanocrystalline TiO2 via phosphonate-Zr(IV) coordination linkages. Analysis of the transient spectra of the assembly (denoted TiO2-[Rua(II)-Zr-Rub(II)-OH2](4+)) reveal that photoexcitation initiates electron injection, which is then followed by the transfer of the oxidative equivalent from the chromophore to the catalyst with a rate of kET = 5.9 × 10(9) s(-1) (τ = 170 ps). While the assembly, TiO2-[Rua(II)-Zr-Rub(II)-OH2](4+), has a near-unit efficiency for transfer of the oxidative equivalent to the catalyst, the overall efficiency of the system is only 43% due to nonproductive photoexcitation of the catalyst and nonunit efficiency for electron injection. The modular nature of the layer-by-layer system allows for variation of the light-harvesting chromophore and water oxidation catalyst for future studies to increase the overall efficiency.

19.
Proc Natl Acad Sci U S A ; 108(21): 8554-8, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21555541

RESUMO

The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.


Assuntos
Corantes/química , Elétrons , Ligação de Hidrogênio , Prótons , Compostos de Bifenilo , Cumarínicos , Nitrofenóis , Processos Fotoquímicos , Análise Espectral
20.
Nano Lett ; 13(12): 6281-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24274858

RESUMO

Si nanowires (NWs) have been widely explored as a platform for photonic and electronic technologies. Here, we report a bottom-up method to break the conventional "wire" symmetry and synthetically encode a high-resolution array of arbitrary shapes, including nanorods, sinusoids, bowties, tapers, nanogaps, and gratings, along the NW growth axis. Rapid modulation of phosphorus doping combined with selective wet-chemical etching enabled morphological features as small as 10 nm to be patterned over wires more than 50 µm in length. This capability fundamentally expands the set of technologies that can be realized with Si NWs, and as proof-of-concept, we demonstrate two distinct applications. First, nanogap-encoded NWs were used as templates for Noble metals, yielding plasmonic structures with tunable resonances for surface-enhanced Raman imaging. Second, core/shell Si/SiO2 nanorods were integrated into electronic devices that exhibit resistive switching, enabling nonvolatile memory storage. Moving beyond these initial examples, we envision this method will become a generic route to encode new functionality in semiconductor NWs.


Assuntos
Eletrônica , Nanofios/química , Semicondutores , Silício/química , Nanotubos/química , Dióxido de Silício/química , Análise Espectral Raman , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA